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Abstract

In this paper we consider random block matrices which generalize the classical Laguerre
ensemble and the Jacobi ensemble. We show that the random eigenvalues of the matrices
can be uniformly approximated by the roots of matrix orthogonal polynomials and obtain
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between the random block matrices and matrix orthogonal polynomials allows a derivation
of the asymptotic spectral distribution of the matrices.
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1 Introduction

The three classical ensembles of random matrix theory are the Hermite, Laguerre and Jacobi

ensembles. Associated with each ensemble there is a real positive parameter β which is usually

considered for three values. The case β = 1 corresponds to real matrices, while the ensembles for
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β = 2 and β = 4 arise from complex and quaternion random matrices, respectively, according

to Dyson (1962) threefold classification. Dumitriu and Edelman (2002) provided tridiagonal

random matrix models for the general β-Hermite and β-Laguerre ensembles for all β > 0. The

development of a tridiagonal matrix model corresponding to the general β-Jacobi ensemble for

all β > 0 was an open problem, which was recently considered by Killip and Nenciu (2004). The

spectral distributions of large dimensional matrices of the three classical ensembles have been

studied extensively in the literature, see Mehta (2004), Bai (1999) or Bai and Silverstein (1995).

Several authors have extended the study of random matrices to the case of random block matrices

and we refer to the works of Girko (2000) and Oraby (2007a,b), among others. Recently, Dette

and Reuther (2009) considered random block matrices which generalize the tridiagonal model of

the Hermite ensemble constructed by Dumitriu and Edelman (2002) and obtained the asymp-

totic spectral distribution. It is the purpose of the present paper to investigate the asymptotic

properties of some random block tridiagonal matrices corresponding to the classical Laguerre and

Jacobi ensemble. In Section 2 we revisit the Jacobi ensemble and introduce the random block

matrices considered in this paper. In Section 3 we will review some facts on matrix orthogonal

polynomials and the limiting distribution of their roots. In Section 4 we demonstrate that the

eigenvalues of the random block matrices can be approximated uniformly (almost surely) by the

deterministic roots of matrix orthogonal polynomials. Matrix polynomials have been studied by

several authors, see Sinap and van Assche (1994), Duran and van Assche (1995), Duran (1995,

1996, 1999), Duran and Lopez-Rodriguez (1996, 1997), Grünbaum (2003) and Damanik et al.

(2008). In particular, Duran (1999) and Dette and Reuther (2009) provided limit theorems for

the empirical distribution of the roots of orthogonal matrix polynomials and these results are

applied to obtain the asymptotic spectral distribution of the random block matrices. In Section

5 we introduce a generalization of the Laguerre ensemble to block matrices and study the corre-

sponding limiting spectral distribution. Finally, the proofs of some technical results are deferred

to an Appendix in Section 6.

2 The Jacobi ensemble and the corresponding block ma-

trices

The Jacobi ensemble is defined by its density

fβ,a,b(λ) = cβ,a,b

∏
1≤i<j≤n

|λi − λj|β
n∏

j=1

(2− λj)
a(2 + λj)

bI(−2,2)(λj),(2.1)
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where β > 0, a, b > −1 and the normalization constant cβ,a,b is given by

cβ,a,b = 4−n(a+b+n−1
2

β+1)

n−1∏
j=0

Γ(1 + β
2
)Γ(a + b + (n + j − 1)β

2
+ 2)

Γ(1 + β
2

+ β
2
j)Γ(a + β

2
j + 1)Γ(b + β

2
j + 1)

.

Killip and Nenciu (2004) provided a tridiagonal random matrix model of the Jacobi ensemble

where the entries are composed of independent random variables with beta distributions on the

interval [−1, 1]. To be precise, note that the Beta distribution Beta(a, b) on the interval [−1, 1]

is defined by the density

f(x) = 21−a−b Γ(a + b)

Γ(a)Γ(b)
(1− x)a−1(1 + x)b−1I(−1,1)(x).(2.2)

Now let αk for k = 0, . . . , 2n− 1 be independent random variables with

αk ∼




Beta
(

2n−k−2
4

βn + a + 1, 2n−k−2
4

β + b + 1
)

for k even,

Beta
(

2n−k−3
4

β + a + b + 2, 2n−k−1
4

β
)

for k odd,

then the joint density of the eigenvalues of the tridiagonal matrix

Jn = Jn(β, a, b) =




b1 a1

a1 b2
. . .

. . . . . . an−1

an−1 bn



∈ Rn×n(2.3)

with entries

bk+1 = (1− α2k−1)α2k − (1 + α2k−1)α2k−2 ,

ak+1 =
{
(1− α2k−1)(1− α2

2k)(1 + α2k+1)
}1/2

(α2n−1 = α−1 = α−2 = −1) is given by the Jacobi ensemble (2.1). As a generalization of the

matrix Jn, we consider random tridiagonal block matrices of the form

J (p)
n = J (p)

n (β, a, b) :=




B
(p)
0,n A

(p)
1,n

A
(p)
1,n B

(p)
1,n A

(p)
2,n

A
(p)
2,n

. . . . . . . . .

. . . . . . . . . A
(p)
n
p
−1,n

A
(p)
n
p
−1,n B

(p)
n
p
−1,n



∈ Rn×n,(2.4)

3



where n = mp with m, p ∈ N and the symmetric p× p blocks A
(p)
i,n and B

(p)
i,n are defined by

B
(p)
i,n :=




b
(1,n)
ip+1 a

(1,n)
ip+1 a

(2,n)
ip+2 · · · · · · a

(p−1,n)
(i+1)p−1

a
(1,n)
ip+1 b

(1,n)
ip+2 a

(1,n)
ip+2 · · · · · · a

(p−2,n)
(i+1)p−1

a
(2,n)
ip+2

...
...

. . .
...

... b
(1,n)
(i+1)p−1 a

(1,n)
(i+1)p−1

a
(p−1,n)
(i+1)p−1 · · · · · · · · · a

(1,n)
(i+1)p−1 b

(1,n)
(i+1)p




and

A
(p)
i,n :=




a
(p,n)
ip a

(p−1,n)
ip a

(p−2,n)
ip · · · · · · a

(1,n)
ip

a
(p−1,n)
ip a

(p,n)
ip+1 a

(p−1,n)
ip+1 · · · · · · a

(2,n)
ip+1

a
(p−2,n)
ip

. . .
...

... a
(p,n)
ip+p−2 a

(p−1,n)
ip+p−2

a
(1,n)
ip · · · · · · · · · a

(p−1,n)
ip+p−2 a

(p,n)
ip+p−1




,

respectively. The entries in these matrices are given by

b
(1,n)
k+1 = (1− α

(1,n)
2k−1)α

(1,n)
2k − (1 + α

(1,n)
2k−1)α

(1,n)
2k−2,

a
(j,n)
k+1 = ((1− α

(j,n)
2k−1)(1− α

(j,n)
2k

2
)(1 + α

(j,n)
2k+1))

1
2 ,

where the random variables

α
(j,n)
k ∼





Beta
(

2n−k−2
4

β
(j)
n + a

(j)
n + 1, 2n−k−2

4
β

(j)
n + b

(j)
n + 1

)
for k even

Beta
(

2n−k−3
4

β
(j)
n + a

(j)
n + b

(j)
n + 2, 2n−k−1

4
β

(j)
n

)
for k odd

are independent and for j = 1, . . . p the parameters a
(j)
n , b

(j)
n , β

(j)
n ∈ R satisfy a

(j)
n , b

(j)
n > −1 and

β
(j)
n > 0. Note that in the case p = 1 the matrix J

(p)
n reduces to the Jacobi matrix Jn given in

(2.3). A similar extension of the Laguerre ensemble to block matrices will be defined in Section

5. In the following sections we investigate the limiting spectral behaviour of block matrices of

the form as in (2.4).

3 Matrix orthogonal polynomials

Consider a sequence (Pn)n≥0 of p × p matrix polynomials, i.e. of polynomials with matrix

coefficients in Rp×p. A matrix measure Σ is a p × p matrix of signed Borel measures such that
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for each Borel set A ⊂ R the matrix Σ(A) is symmetric and nonnegative definite. The sequence

(Pn)n≥0 of matrix polynomials is orthonormal with respect to the matrix measure Σ if

∫
Pn(x)dΣ(x)P T

m(x) = δnmIp,(3.1)

where Ip denotes the p × p identity matrix. By Favard’s Theorem (see Sinap and van Assche

(1996)) a sequence of matrix orthonormal polynomials (Pn)n≥0 can be characterized by a three

term recurrence

tPn(t) = An+1Pn+1(t) + BnPn(t) + AT
nPn−1(t), n ≥ 0,(3.2)

with initial condition P−1(t) = 0p, P0(t) = A0. For example, the matrix Chebyshev polynomials

of the first kind (TA,B
n )n≥0 are defined recursively by

(3.3)
tTA,B

1 (t) = ATA,B
2 (t) + BTA,B

1 (t) +
√

2ATA,B
0 (t),

tTA,B
n (t) = ATA,B

n+1 (t) + BTA,B
n (t) + ATA,B

n−1 (t), n ≥ 2,

where A and B are symmetric p × p matrices, A is non-singular and TA,B
0 (t) = Ip, TA,B

1 (t) =

(
√

2A)−1(tIp − B). The Chebyshev polynomials (TA,B
n )n≥0 are orthonormal with respect to a

measure that is absolutely continuous with respect to the Lebesgue measure multiplied by the

identity matrix. The corresponding density will be denoted by XA,B. The theory of matrix or-

thogonal polynomials is substantially richer than the corresponding theory in the one-dimensional

case and even the matrix Chebyshev polynomials have not been studied in full detail, see for

example Duran (1999). In the following discussion we consider sequences of matrix orthonormal

polynomials (Rn,k)n≥0 for k ∈ N defined by the recursion

(3.4) tRn,k(t) = An+1,kRn+1,k(t) + Bn,kRn,k(t) + AT
n,kRn−1,k(t), n ≥ 0

where R−1,k(t) = 0p, R0,k(t) = Ip and Bi,k ∈ Rp×p are symmetric and Ai,k ∈ Rp×p non-singular

matrices which depend on the extra parameter k. The roots of the matrix polynomial Rn,k are

the roots of the scalar polynomial

det Rn,k(t)

of degree np. It can be shown that the matrix polynomial Rn,k has precisely np real roots, say

xn,k,j(j = 1, . . . , np), where each root has at most multiplicity p. The empirical distribution of

the roots is defined by

δn,k :=
1

np

np∑
j=1

δxn,k,j
, n, k ≥ 1,(3.5)
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where δz denotes the Dirac measure at the point z ∈ R. Of particular interest are the asymptotic

properties of the empirical distribution δn,k if n, k →∞. For this purpose we consider sequences

(nj)j≥0 and (kj)j≥0 of positive integers such that limj→∞ nj/kj = u for some u ∈ R and we

denote the corresponding limit as limn/k→u (if it exists). The following Theorem by Dette and

Reuther (2009) gives the limit distribution of the roots and will be one main tool in the study

of the asymptotic eigenvalue distributions of the random block matrices defined in the previous

section.

Theorem 3.1 Consider a sequence of matrix orthonormal polynomials defined by the three term

recursion (3.4), where for all ` ∈ N0 and a given u > 0

lim
n
k
→s

An−`,k = A(s)(3.6)

lim
n
k
→s

Bn−`,k = B(s)(3.7)

for all s ∈ (0, u) with non-singular and symmetric matrices {A(s)|s ∈ (0, u)} and symmetric

matrices {B(s)|s ∈ (0, u)}. If there exists a number M > 0 such that

∞⋃

k=1

∞⋃
n=0

{z ∈ R| det Rn,k(z) = 0} ⊂ [−M,M ],(3.8)

then the empirical measure δn,k defined by (3.5) converges weakly to a matrix measure which is

absolutely continuous with respect to the Lebesgue measure multiplied with the identity matrix.

The density of the limiting distribution is given by

f(t) =
1

u

∫ u

0

tr

[
1

p
XA(s),B(s)(t)

]
ds,(3.9)

where XA(s),B(s) is the density of the matrix measure corresponding to the matrix Chebyshev

polynomials of the first kind.

Remark 3.2 If the matrices {A(s)|s ∈ (0, u)} are positive definite, the density (3.9) can be

given explicitly. In this case it can be shown that

tr
[1

p
XA(s),B(s)(t)

]
=

1

p

p∑
j=1

− d
dt

λ
A(s),B(s)
j (t)

π
√

4− (
λ

A(s),B(s)
j (t)

)2
I{−2<λ

A(s),B(s)
j (t)<2} ,(3.10)

where λ
A(s),B(s)
j (t) for j = 1, . . . , p denote the eigenvalues of the matrix A−1(s)(B(s)− tIp).
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4 Spectral asymptotics for the generalized Jacobi ensem-

ble

In this section we study the weak asymptotics of the random eigenvalues λ
(n,p)
1 , . . . , λ

(n,p)
n of the

block matrix J
(p)
n defined in (2.4). The corresponding empirical distribution is given by the

(random) measure

σ(p)
n :=

1

n

n∑
j=1

δ
λ
(n,p)
j

.(4.1)

We first show that the eigenvalues of the matrix J
(p)
n can be approximated by the determinis-

tic roots of the orthogonal matrix polynomials (R
(p)
m,n(x))m>0 which are defined recursively by

R
(p)
−1,n(x) = 0p, R

(p)
0,n(x) = Ip and

xR(p)
m,n(x) = D

(p)
m+1,nR

(p)
m+1,n(x) + C(p)

m,nR
(p)
m,n(x) + D(p)

m,nR
(p)
m−1,n(x), m ≥ 0.(4.2)

The varying (matrix-valued) recursion coefficients in this recursion are given by

C
(p)
i,n :=




c
(1,n)
ip+1 d

(1,n)
ip+1 d

(2,n)
ip+2 · · · · · · d

(p−1,n)
(i+1)p−1

d
(1,n)
ip+1 c

(1,n)
ip+2 d

(1,n)
ip+2 · · · · · · d

(p−2,n)
(i+1)p−1

d
(2,n)
ip+2

. . .
...

...
...

...
... c

(1,n)
(i+1)p−1 d

(1,n)
(i+1)p−1

d
(p−1,n)
(i+1)p−1 · · · · · · · · · d

(1,n)
(i+1)p−1 c

(1,n)
(i+1)p




and

D
(p)
i,n :=




d
(p,n)
ip d

(p−1,n)
ip d

(p−2,n)
ip · · · · · · d

(1,n)
ip

d
(p−1,n)
ip d

(p,n)
ip+1 d

(p−1,n)
ip+1 · · · · · · d

(2,n)
ip+1

d
(p−2,n)
ip

. . .
...

...
...

...
... d

(p,n)
ip+p−2 d

(p−1,n)
ip+p−2

d
(1,n)
ip · · · · · · · · · d

(p−1,n)
ip+p−2 d

(p,n)
ip+p−1




,

where the entries in these matrices are obtained from the entries of the matrix J
(p)
n by essentially

replacing each random variable by its expectation, that is

c
(1,n)
k+1 = (1− E[α

(1,n)
2k−1])E[α

(1,n)
2k ]− (1 + E[α

(1,n)
2k−1])E[α

(1,n)
2k−2],

d
(j,n)
k+1 = ((1− E[α

(j,n)
2k−1])(1− E[α

(j,n)
2k ]

2
)(1 + E[α

(j,n)
2k+1]))

1
2 .
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The expectation of a random variable X ∼ Beta(p, q) with density (2.2) is q−p
q+p

, which gives for

the random variables under consideration

(4.3) E[α
(j,n)
k ] =





b
(j)
n − a

(j)
n

2n−k−2
2

β
(j)
n + a

(j)
n + b

(j)
n + 2

for k even,

β
(j)
n

2
− a

(j)
n − b

(j)
n − 2

2n−k−2
2

β
(j)
n + a

(j)
n + b

(j)
n + 2

for k odd,

for 0 ≤ k ≤ 2n − 2 and E[α−2] = E[α−1] = E[α2n−1] = −1. A straightforward calculation now

yields that the entries of the matrices C
(p)
i,n and D

(p)
i,n are given by

c
(1,n)
k+1 =

2(b
(1)
n − a

(1)
n )(a

(1)
n + b

(1)
n + 2)

((n− k − 1)β
(1)
n + a

(1)
n + b

(1)
n + 2)((n− k)β

(1)
n + a

(1)
n + b

(1)
n + 2)

for k ≥ 1 and

c
(1,n)
1 =

2(b
(1)
n − a

(1)
n )

(2n− 2)β
(1)
n

2
+ a

(1)
n + b

(1)
n + 2

and similarly for k ≥ 1

d
(j,n)
k+1 =

( 4((2n− 2k + 2)β
(j)
n /2 + 2a

(j)
n + 2b

(j)
n + 4)((n− k + 1)β

(j)
n /2 + a

(j)
n + 1)

((2n− 2k + 3)β
(j)
n /2 + a

(j)
n + b

(j)
n + 2)((2n− 2k + 2)β

(j)
n /2 + a

(j)
n + b

(j)
n + 2)2

× ((n− k + 1)β
(j)
n /2 + b

(j)
n + 1)(n− k + 1)β

(j)
n

((2n− 2k + 1)β
(j)
n /2 + a

(j)
n + b

(j)
n + 2)

) 1
2

and

d
(j,n)
1 =

(
8

((n− 1)β
(j)
n /2 + a

(j)
n + 1)((n− 1)β

(j)
n /2 + b

(j)
n + 1)(n− 1)β

(j)
n

((n− 1)β
(j)
n + a

(j)
n + b

(j)
n + 2)2((2n− 3)β

(j)
n /2 + a

(j)
n + b

(j)
n + 2)

) 1
2
.

Now let n = mp for some m ∈ N and choose the parameters β
(j)
n , a

(j)
n , b

(j)
n such that the matrices

D
(p)
i,n are non-singular. Then the matrix polynomial R

(p)
n/p,n(x) of degree n/p ∈ N has (n/p)p = n

real roots. Our next Theorem shows that the eigenvalues of the matrix J
(p)
n can be approximated

by the roots of the matrix polynomial R
(p)
n/p,n(x) with high probability.

Theorem 4.1 Let λ
(n,p)
1 ≤ . . . ≤ λ

(n,p)
n be the ordered eigenvalues of the matrix J

(p)
n and denote

by x
(n,p)
1 ≤ . . . ≤ x

(n,p)
n the ordered roots of the matrix polynomial R

(p)
n/p,n(x). Then for all ε ∈ (0, 1]

and n ≥ 1 the inequality

(4.4) P
(

max
1≤j≤n

|λ(n,p)
j − x

(n,p)
j | > ε

)

8



≤ 4p(2n− 1) exp
((

log
(
1 +

ε2

648p2 + 2ε2

)− ε2

648p2 + 2ε2

)
(an + bn + 2)

)
,

holds, where we define

(4.5) an := min
1≤j≤p

a(j)
n and bn := min

1≤j≤p
b(j)
n .

Proof: The recursion (4.2) of the matrix polynomial R
(p)
n/p,n(x) implies that the roots x

(n,p)
1 ≤

. . . ≤ x
(n,p)
n are the ordered eigenvalues of the block tridiagonal matrix

E(p)
n :=




C
(p)
0,n D

(p)
1,n

D
(p)
1,n C

(p)
1,n D

(p)
2,n

D
(p)
2,n

. . . . . .

. . . . . . D
(p)
n
p
−1,n

C
(p)
n
p
−1,n C

(p)
n
p
−1,n




,

which contains the recurrence coefficients of the matrix polynomials (R
(p)
m,n(x))m>0. Now Weyl’s

inequality and Theorem 5.6.9 in Horn and Johnsohn (1985) yields

max
1≤j≤n

|λ(n,p)
j − x

(n,p)
j | ≤ max

1≤k≤n

n∑
j=1

|{(J (p)
n − E(p)

n

)}k,j|,(4.6)

which gives an upper bound for the difference between the eigenvalues of the matrices J
(p)
n and

E
(p)
n . By using essentially the same arguments as in Silverstein (1985) and Dette and Nagel

(2009) we can show the inequality

max
1≤k≤n

n∑
j=1

|{(J (p)
n − E(p)

n

)}k,j| ≤ (3p− 1)
√

12Xn + 6Xn,(4.7)

where the random variable Xn is defined as

Xn := max
j=1,...,p

max
0≤k≤2n−2

|α(j,n)
k − E[α

(j,n)
k ]|.(4.8)

This implies for the probability under consideration

P
(

max
1≤j≤n

|λ(n,p)
j − x

(n,p)
j | > ε

)
≤ P

(
(3p− 1)

√
3Xn + 3Xn >

ε

2

)

≤ P
(
3p

√
3Xn >

ε

2

)
= P

(
Xn >

ε2

108p2

)
.
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The second inequality holds because 3Xn ≤
√

3Xn if 3Xn ≤ 1 and 3Xn > ε
2

if 3Xn > 1 ≥ ε.

Observing Lemma A.1 in Dette and Nagel (2009) it follows that

P
(
Xn >

ε2

108p2

)
≤

p∑
j=1

2n−2∑

k=0

P
( ∣∣∣α(j,n)

k − E
[
α

(j,n)
k

]∣∣∣ >
ε2

108p2

)

≤
p∑

j=1

2n−2∑

k=0

4 exp
(
c
(
a(j)

n + b(j)
n + 2

))

≤4p(2n− 1) exp (c (an + bn + 2)) ,

where the constant c is given by

c = log
(
1 +

ε2

648p2 + 2ε2

)
− ε2

648p2 + 2ε2
.(4.9)

This proves the assertion of the Theorem. 2

Note that the constant c given in (4.9) is negative and therefore the probablility (4.4) decays

exponentially fast. This indicated that the random eigenvalues of the generalized Jacobi en-

semble can be approximated uniformly by the roots of the matrix polynomials R
(p)
n/p,n(x) almost

surely. The following Theorem makes this statement more precise and provides a rate for the

convergence. The proof follows by similar arguments as the proof of Theorem 2.2 in Dette and

Imhof (2007) and is therefore omitted.

Theorem 4.2 Let λ
(n,p)
1 ≤ . . . ≤ λ

(n,p)
n be the ordered eigenvalues of the matrix J

(p)
n and denote

by x
(n,p)
1 ≤ . . . ≤ x

(n,p)
n the ordered roots of the matrix polynomial R

(p)
n/p,n. Suppose

(4.10) lim
n→∞

(an + bn)

log n
= ∞,

where an and bn are defined in (4.5), then there exists an a.s. finite random variable S such that

the inequality

(4.11) max
1≤j≤n

|λ(n,p)
j − x

(n,p)
j | ≤

( log n

an + bn

) 1
4
S

holds for all n ≥ 2.
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Theorem 4.3 Denote by λ
(n,p)
1 ≤ . . . ≤ λ

(n,p)
n the ordered eigenvalues of the matrix J

(p)
n , where

the parameters β
(j)
n , a

(j)
n , b

(j)
n , j = 1, . . . , p are chosen such that the matrices D

(p)
i , i = 1, . . . , n/p−

1 and the matrix D(p)(s) defined below is non-singular for 0 < s < 1/p. Recall the notation (4.5),

suppose that

(4.12) lim
n→∞

(an + bn)

log n
= ∞,

and that the limits

(4.13) lim
n→∞

a
(j)
n

nβ
(j)
n

=: a(j) < ∞ and lim
n→∞

b
(j)
n

nβ
(j)
n

=: b(j) < ∞

exist. Then, almost surely, the empirical distribution σ
(p)
n of the eigenvalues of the matrix J

(p)
n

converges weakly towards a measure that is absolutely continuous with respect to the Lebesgue

measure. The density of this measure is given by

f(t) =

∫ 1
p

0

tr[XD(p)(s),C(p)(s)(t)]ds,(4.14)

where XD(p)(s),C(p)(s)(t) denotes the Lebesgue density of the matrix measure corresponding to the

matrix Chebychev polynomials of the first kind defined in (3.3) with matrices

C(p)(s) :=




c(1)(s) d(1)(s) d(2)(s) · · · · · · d(p−1)(s)

d(1)(s) c(1)(s) d(1)(s) · · · · · · d(p−2)(s)

d(2)(s)
. . .

...
...

...
. . . c(1)(s) d(1)(s)

d(p−1)(s) · · · · · · · · · d(1)(s) c(1)(s)




and

D(p)(s) :=




d(p)(s) d(p−1)(s) d(p−2)(s) · · · · · · d(1)(s)

d(p−1)(s) d(p)(s) d(p−1)(s) · · · · · · d(2)(s)

d(p−2)(s)
. . .

...
...

...
. . . d(p)(s) d(p−1)(s)

d(1)(s) · · · · · · · · · d(p−1)(s) d(p)(s)




with entries

c(1)(s) =
2(b(1)2 − a(1)2)

(1− sp + a(1) + b(1))2
,

d(j)(s) =
(4(1− sp + 2a(j) + 2b(j))(1−sp

2
+ a(j))(1−sp

2
+ b(j))(1− sp)

(1− sp + a(j) + b(j))4

) 1
2
.
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Proof: Under the conditions (4.13) the recursion coefficients D
(p)
i and C

(p)
i of the matrix

polynomial R
(p)
n/p,n(x) converge to the limiting matrices given in the theorem, i.e. for all ` ∈ N

and s ∈ (0, 1/p)

lim
i
n
→s

C
(p)
i−l,n = C(p)(s) and lim

i
n
→s

D
(p)
i−l,n = D(p)(s).

By Geršgorin’s Theorem [see Horn and Johnsohn (1985)] the convergence implies the existence

of an M > 0 such that the roots x
(n,p)
1 ≤ . . . < x

(n,p)
n of R

(p)
n/p,n(x) are elements of a compact

interval [−M,M ]. An application of Theorem 3.1 with u = limn→∞ n
p
/n = 1

p
yields that the

empirical distribution δ
(p)
n of the roots converges weakly to a measure with density (4.14). Now

consider the Lévy distance L(σ
(p)
n , δ

(p)
n ) between the empirical measures, then Bai (1999) gives

the inequality

L3(σ(p)
n , δ(p)

n ) ≤ 1

n

n∑
j=1

∣∣∣λ(n,p)
j − x

(n,p)
j

∣∣∣
2

and Theorem 4.2 shows that the right-hand side converges almost surely to 0, which gives the

almost sure weak convergence of σ
(p)
n with the same limit as δ

(p)
n , that is the measure with

Lebesgue density defined by (4.14). 2

Remark 4.4 Note that condition (4.13) ensures the existence of the limiting matrices C(p)(s)

and D(p)(s). The condition can be relaxed for some j, as long as the limits of the matrix entries

still exist and the matrix D(p)(s) is non-singular.

We conclude this section with a few examples to illustrate the shape of the limit distribution

of the eigenvalues. First note that in the case p = 1 the eigenvalues of the matrix J
(p)
n are

the eigenvalues of the classical Jacobi ensemble which have been considered by Collins (2005)

and Dette and Nagel (2009). Now consider the case p = 2. In this case we have to choose the

parameters a
(i)
n , b

(i)
n , β

(i)
n for i = 1, 2 such that the matrices D(p)(s) defined in Theorem 4.3 are

non-singular. In the examples considered here the matrix D(p)(s) is also positive definite and we

can calculate the density of the limit distribution using formula (3.10).

The left part of Figure 1 displays a simulated histogram of the eigenvalues of J
(p)
n for n = 5000

(i.e. m = n/p = 2500) and parameters a
(1)
n = 20n, b

(1)
n = n, a

(2)
n = b

(2)
n = n and β

(1)
n = β

(2)
n = 1

while the right part shows the corresponding limit distribution obtained from Theorem 4.3.

Figure 2 displays the simulated histogram and the corresponding limit density for the parameters

a
(1)
n = b

(1)
n = n, β

(1)
n = 1, a

(2)
n = b

(2)
n =

√
n, β

(2)
n = 1. In this case some of the limits in the

condition (4.13) are equal to 0.
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−3 −2 −1 0
0

0.1

0.2

0.3

0.4

Figure 1: Simulated and limiting spectral density of the random block matrix J
(p)
n in the case

p = 2, a
(1)
n = 20n, b

(1)
n = n, β

(1)
n = 1, a

(2)
n = b

(2)
n = n, β

(2)
n = 1. In the simulation the eigenvalues

of a 5000× 5000 matrix were calculated.

−2 0 2 4
0

0.1

0.2

0.3

0.4

0.5

Figure 2: Simulated and limiting spectral density of the random block matrix J
(p)
n in the case

p = 2, a
(1)
n = b

(1)
n = n, β

(1)
n = 1, a

(2)
n = b

(2)
n =

√
n, β

(2)
n = 1. In the simulation the eigenvalues of

a 5000× 5000 matrix were calculated.
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As stated in Remark 4.4 we can calculate the limit distribution even if some parameters converge

to infinity at a rate larger than n. Figure 3 illustrates the convergence in this case for the

parameters a
(1)
n = 2n, b

(1)
n = n3, β

(1)
n = 1, a

(2)
n =

√
n, b

(2)
n = n, β

(2)
n = 2.

0 1 2 3 4
0

0.1

0.2

0.3

0.4

Figure 3: Simulated and limiting spectral density of the random block matrix J
(p)
n in the case

p = 2, a
(1)
n = 2n, b

(1)
n = n3, β

(1)
n = 1, a

(2)
n =

√
n, b

(2)
n = n, β

(2)
n = 2. In the simulation the

eigenvalues of a 5000× 5000 matrix were calculated.

5 Random block Laguerre ensembles

Following the idea of the previous paragraphs, we can define a generalization of the Laguerre

ensemble. The tridiagonal matrix model of the Laguerre ensemble is replaced by a block tridi-

agonal matrix while maintaining the general structure of the entries. Recall that the density

defining the Laguerre ensemble is defined by

fβ,a(λ) = cβ,a

∏
1≤i<j≤n

|λi − λj|β
n∏

i=1

λ
a−(n−1)β

2
−1

i e−
∑n

i=1
λi
2 I(0,∞)(λj) ,(5.1)

where β > 0, a > (n− 1)β
2

> 0 and the normalization constant cβ,a is given by

cβ,a = 2−na

n∏
j=1

Γ(1 + β
2
)

Γ(1 + j β
2
)Γ(a− (n− j)β

2
)

.

Dumitriu and Edelman (2002) provided a tridiagonal random matrix model of the Laguerre

ensemble. For this purpose let X2a, X2a−β, . . . , X2a−(n−1)β, Yβ, . . . , Y(n−1)β be independent ran-

dom variables, where X2
r , Y 2

r ∼ χ2(r) are chi-square distributed. Then the joint density of the
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eigenvalues λ1 ≤ . . . ≤ λn of the matrix

Ln = Ln(a, β) =




b0 a1

a1 b1 a2

. . . . . . an−1

an−1 bn−1



∈ Rn×n(5.2)

is given by (5.1), where the entries in the matrix Ln are defined by

b0 =
1

2a
X2

2a,

bi−1 =
1

2a
(X2

2a−(i−1)β + Y 2
(n+1−i)β), i = 2, . . . , n,

ai =
1

2a
X2a−(i−1)βY(n−i)β, i = 1, . . . , n− 1.

Next we consider random tridiagonal block matrices of the form

L(p)
n = L(p)

n (a, β) :=




B
(p)
0,n A

(p)
1,n

A
(p)
1,n B

(p)
1,n A

(p)
2,n

A
(p)
2,n

. . . . . .

. . . . . . A
(p)
n
p
−1,n

A
(p)
n
p
−1,n B

(p)
n
p
−1,n



∈ Rn×n,(5.3)

where n = mp with m, p ∈ N and the symmetric p× p blocks A
(p)
i,n and B

(p)
i,n are given by

B
(p)
i,n :=




b
(1,n)
ip a

(1,n)
ip+1 a

(2,n)
ip+2 · · · a

(p−1,n)
(i+1)p−1

a
(1,n)
ip+1 b

(1,n)
ip+1 a

(1,n)
ip+2 · · · a

(p−2,n)
(i+1)p−1

a
(2,n)
ip+2

. . .
...

... b
(1,n)
(i+1)p−2 a

(1,n)
(i+1)p−1

a
(p−1,n)
(i+1)p−1 · · · · · · a

(1,n)
(i+1)p−1 b

(1,n)
(i+1)p−1




and

A
(p)
i,n :=




a
(p,n)
ip a

(p−1,n)
ip a

(p−2,n)
ip · · · a

(1,n)
ip

a
(p−1,n)
ip a

(p,n)
ip+1 a

(p−1,n)
ip+1 · · · a

(2,n)
ip+1

a
(p−2,n)
ip

. . .
...

... a
(p,n)
ip+p−2 a

(p−1,n)
ip+p−2

a
(1,n)
ip · · · · · · a

(p−1,n)
ip+p−2 a

(p,n)
ip+p−1




.
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The entries are defined by

b
(1,n)
0 =

1

2a
(1)
n

X2

2a
(1)
n

,

b
(1,n)
k−1 =

1

2a
(1)
n

(X2

2a
(1)
n −(k−1)β

(1)
n

+ Y 2

(n+1−k)β
(1)
n

), k = 2, . . . , n,

a
(j,n)
k =

1

2a
(j)
n

X
2a

(j)
n −(k−1)β

(j)
n

Y
(n−k)β

(j)
n

, k = 1, . . . , n− 1,

where for j = 1, . . . p the parameters a
(j)
n , β

(j)
n ∈ R satisfy a

(j)
n > β

(j)
n

2
(n−1). For p = 1, the matrix

L
(p)
n reduces to the matrix Ln defined in (5.2) and the eigenvalues are distributed according to

the density (5.1). We will show in this Section that the eigenvalues of the random block matrix

L
(p)
n can be almost surely approximated by the roots of the matrix polynomial R

(p)
m,n(x) which is

defined by the recurrence relation

xR(p)
m,n(x) = D

(p)
m+1,nR

(p)
m+1,n(x) + C(p)

m,nR
(p)
m,n(x) + D(p)

m,nR
(p)
m−1,n(x), m ≥ 0,(5.4)

where we define the varying (matrix-valued) coefficients in the recursion by

C
(p)
i,n :=




c
(1,n)
ip d

(1,n)
ip+1 d

(2,n)
ip+2 · · · · · · d

(p−1,n)
(i+1)p−1

d
(1,n)
ip+1 c

(1,n)
ip+1 d

(1,n)
ip+2 · · · · · · d

(p−2,n)
(i+1)p−1

d
(2,n)
ip+2

. . .
...

...
...

. . . c
(1,n)
(i+1)p−2 d

(1,n)
(i+1)p−1

d
(p−1,n)
(i+1)p−1 · · · · · · · · · d

(1,n)
(i+1)p−1 c

(1,n)
(i+1)p−1




and

D
(p)
i,n :=




d
(p,n)
ip d

(p−1,n)
ip d

(p−2,n)
ip · · · · · · d

(1,n)
ip

d
(p−1,n)
ip d

(p,n)
ip+1 d

(p−1,n)
ip+1 · · · · · · d

(2,n)
ip+1

d
(p−2,n)
ip

. . .
...

...
...

. . . d
(p,n)
ip+p−2 d

(p−1,n)
ip+p−2

d
(1,n)
ip · · · · · · · · · d

(p−1,n)
ip+p−2 d

(p,n)
ip+p−1




.

The entries in these matrices are given by

c
(1,n)
0 = 1,

c
(1,n)
k−1 =

2a
(1)
n + (n + 2− 2k)β

(1)
n

2a
(1)
n

,

d
(j,n)
k =

1

2a
(j)
n

√
(2a

(j)
n − (k − 1)β

(j)
n )(n− k)β

(j)
n .

The following results extend the results of Chapter 4 to the generalized Laguerre ensemble. The

proofs are similar to those given in Section 4 and omitted for the sake of brevity.
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Theorem 5.1 Let λ
(n,p)
1 , . . . , λ

(n,p)
n denote the ordered eigenvalues of the matrix L

(p)
n defined in

(5.3) and x
(n,p)
1 < . . . < x

(n,p)
n the ordered roots of the matrix polynomial R

(p)
n/p,n(x) Then for any

ε ∈ (0, 1] the inequality

(5.5) P
(

max
1≤j≤n

|λ(n,p)
j − x

(n,p)
j | > ε

)
≤ 2p(2n− 1) exp

(
− ε4an

4(6p− 1)4

)

holds for n ≥ 1, where an := min
1≤j≤p

a
(j)
n .

Theorem 5.2 Let λ
(n,p)
1 ≤ . . . ≤ λ

(n,p)
n be the ordered eigenvalues of the matrix L

(p)
n and denote

by x
(n,p)
1 ≤ . . . ≤ x

(n,p)
n the ordered roots of the matrix polynomial R

(p)
n/p,n. Suppose that

lim
n→∞

an

log n
= ∞(5.6)

with an := min
1≤j≤p

a
(j)
n , then there exists an almost sure finite random variable S such that

max
1≤j≤n

|λ(n,p)
j − x

(n,p)
j | ≤

( log n

an

) 1
4
S(5.7)

holds for all n ≥ 2.

The rate given in (5.7) can be improved if we impose additional conditions of the parameters of

the generalized Laguerre ensemble. The following Theorem makes this statement more precise

and is a generalization of Theorem 2.5 of Dette and Imhof (2007) to the matrix case. We outline

the proof in the Appendix.

Theorem 5.3 Let λ
(n,p)
1 ≤ . . . ≤ λ

(n,p)
n be the ordered eigenvalues of the matrix L

(p)
n and denote

by x
(n,p)
1 ≤ . . . ≤ x

(n,p)
n the ordered roots of the matrix polynomial R

(p)
n/p,n(x). Suppose that there

exists a K > 0 such that

(5.8) n + K ≥ 2a
(j)
n

β
(j)
n

≥ n− 1 +
1

β
(j)
n

holds for all n ≥ 2. Then there exists an almost sure finite random variable S such that the

inequality

max
1≤j≤n

|λ(n,p)
j − x

(n,p)
j | ≤

( log n

n

) 1
2
S

holds for all n ≥ 2.
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Theorem 5.1 and Theorem 5.2 show that as n tends to infinity, the eigenvalues of the matrix

L
(p)
n can be almost surely approximated by the roots of the matrix polynomial R

(p)
n/p,n(x). Using

the same arguments as in the proof of Theorem 4.3 we can show that the limit distribution of

the roots given by Theorem 3.1 can be transferred to the random eigenvalues.

Theorem 5.4 Denote by λ
(n,p)
1 ≤ . . . ≤ λ

(n,p)
n the ordered eigenvalues of the matrix L

(p)
n , where

the parameters β
(j)
n , a

(j)
n , j = 1, . . . , p are chosen such that the matrices D

(p)
i,n , i = 1, . . . , n/p− 1

and the matrix D(p)(s) defined below are non-singular for 0 < s < 1/p. Suppose that

(5.9) lim
n→∞

an

log n
= ∞,

where we use the notation an := min
1≤j≤p

a
(j)
n and that the limits

(5.10) lim
n→∞

a
(j)
n

nβ
(j)
n

=: a(j) < ∞ (j = 1, . . . , p).

exist. Then, almost surely, the empirical distribution of the eigenvalues of the matrix L
(p)
n con-

verges weakly to a measure which is absolutely continuous with respect to the Lebesgue measure.

The density of this measure is given by

f(t) =

∫ 1
p

0

tr[XD(p)(s),C(p)(s)(t)]ds,(5.11)

where XD(p)(s),C(p)(s)(t) denotes the Lebesgue density of the matrix measure corresponding to the

matrix Chebychev polynomials of the first kind defined in (3.3) with matrices

C(p)(s) :=




c(1)(s) d(1)(s) d(2)(s) · · · · · · d(p−1)(s)

d(1)(s) c(1)(s) d(1)(s) · · · · · · d(p−2)(s)

d(2)(s)
. . .

...
... c(1)(s) d(1)(s)

d(p−1)(s) · · · · · · · · · d(1)(s) c(1)(s)




D(p)(s) :=




d(p)(s) d(p−1)(s) d(p−2)(s) · · · · · · d(1)(s)

d(p−1)(s) d(p)(s) d(p−1)(s) · · · · · · d(2)(s)

d(p−2)(s)
. . .

...
... d(p)(s) d(p−1)(s)

d(1)(s) · · · · · · · · · d(p−1)(s) d(p)(s)



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and entries

c(1)(s) =
2a(1) + 1− 2sp

2a(1)
,

d(j)(s) =
1

2a(j)

√
2a(j) − 2a(j)sp− sp + (sp)2.

We conclude this section with some examples for the case p = 2. Figure 4 and Figure 5 show a

simulated histogram of the eigenvalues of L
(p)
n for n = 5000 (left panels) and the corresponding

limiting density (right panels). Note that the parameters are chosen such that the matrix C(p)(u)

defined in Theorem 5.4 is positive definite and the limiting density can be obtained according to

formula (3.10).

−1 0 1 2 3 4
0

0.5

1

1.5

2

2.5

Figure 4: Simulated and limiting spectral density of the matrix L
(p)
n for p = 2, a

(1)
n = 2n, β

(1)
n =

1, a
(2)
n = n, β

(2)
n = 1. In the simulation the eigenvalues of a 5000× 5000 matrix were calculated.

−1 0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

Figure 5: Simulated and limiting spectral density of the matrix L
(p)
n for p = 2, a

(1)
n = 10n, β

(1)
n =

1, a
(2)
n = n, β

(2)
n = 1. In the simulation the eigenvalues of a 5000× 5000 matrix were calculated.
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ant random matrix ensembles).

6 Appendix: Proof of Theorem 5.3

The assertion of Theorem 5.3 follows from a sharper upper bound for the probability in (5.5).

First we define the random variables

Z(1,j)
n = max

0≤i≤n−1

∣∣X
2a

(j)
n −iβ

(j)
n
− (2a

(j)
n − iβ

(j)
n )

∣∣
2a

(j)
n

,

Z(2,j)
n = max

1≤i≤n−1

∣∣Y
iβ

(j)
n
− iβ

(j)
n

∣∣
2a

(j)
n

,

Z(3,j)
n = max

1≤i≤n−1

∣∣X
2a

(j)
n −(i−1)β

(j)
n

Y
(n−i)β

(j)
n
−

√
(2a

(j)
n − (i− 1)β

(j)
n )(n− i)β

(j)
n

∣∣
2a

(j)
n

,

Z(1)
n = max

1≤j≤p
{Z(1,j)

n }, Z(2)
n = max

1≤j≤p
{Z(2,j)

n } , Z(3)
n = max

1≤j≤p
{Z(3,j)

n },

Zn = max{Z(1)
n , Z(2)

n , Z(3)
n }.

Similar to the proof of Theorem 4.1 we can show for the maximum difference between the

eigenvalues λ
(n,p)
j and the roots x

(n,p)
j the inequality

max
1≤j≤n

|λ(n,p)
j − x

(n,p)
j | ≤ 4pZn

and therefore

(6.1) P
(

max
1≤j≤n

|λ(n,p)
j − x

(n,p)
j | > ε

)
≤ P

(
max{Z(1)

n , Z(2)
n } >

ε

4p

)
+ P

(
Z(3)

n >
ε

4p

)
.

Now the two probabilities in (6.1) can be considered separately and the arguments in Dette and

Imhof (2007) show that

P
(
max{Z(1)

n , Z(2)
n } >

ε

4p

)
≤

p∑
j=1

(2n− 1)p1(j)

and

P
(
Z(3)

n >
ε

4p

)
≤

p∑
j=1

(n− 1)(p1(j) + p2(j)),
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where

p1(j) =2
((

1 +
ε

4p
√

K + 2

)
exp

(
− ε

4p
√

K + 2

))a
(j)
n

,

p2(j) =2 exp
((K + 1)2β

(j)
n

8

)(
1− ε

4p

)(n−1)β
(j)
n

exp
(a

(j)
n ε

2p

)
.

This gives the upper bound

P
(

max
1≤j≤n

|λ(n,p)
j − x

(n,p)
j | > ε

)
≤

p∑
j=1

(3n− 2)p1(j) + (n− 1)p2(j)

which is a sharper inequality than (5.5). The arguments presented in Dette and Imhof (2007)

now show that the difference between the eigenvalues λ
(n,p)
j and the roots x

(n,p)
j satisfies the

inequality in Theorem 5.3 and conclude the proof.
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