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Abstract

The paper is concerned with confidence interval construction for functionals of the

survival distribution for censored dependent data. We adopt the recently developed self-

normalizion approach (Shao, 2010), which does not involve consistent estimation of the

asymptotic variance, as implicitly used in the blockwise empirical likelihood approach of El

Ghouch et al. (2011). We also provide a rigorous asymptotic theory to derive the limiting

distribution of the self-normalized quantity for a wide range of parameters. Additionally,

finite sample properties of the SN-based intervals are carefully examined and a comparison

with the empirical likelihood based counterparts is made.

Key words and phrases: censored data, dependence, empirical likelihood, quantile, self-

normalization, survival analysis.

1. Introduction and Motivation

Censored data are frequently encountered in a spectrum of areas such as medical follow-

up studies, engineering life-testing, economics and social sciences. A huge amount of

literature is devoted to the inference for censored data that are independent and identically

distributed (iid); see for example Kalbfleisch and Prentice (2002). However, dependence

arises naturally in real applications when the data are collected sequentially in time or are
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observed in space. For example, in environmental research, concentration measurements

are often subject to the measurement limit of the equipment; if the measurement is lower

or greater than certain detection limit, it is reported as non-detects. When such data are

collected over time, it naturally gives rise to a censored time series, see e.g., Zeger and

Brookmeyer (1986), Glasbey and Nevison (1997) and Eastoe et al. (2006) among many

others for such examples. In finance, prices subject to price limits imposed in stock markets,

commodity future exchanges, and foreign exchange futures markets have been treated as

censored variables. In economics, durations of unemployment may be right censored and

correlated. In the field of clinical trials and population-based biomedical studies, censored

data collected over adjacent neighbourhoods tend to produce more similar outcomes than

distant ones due to similar environmental and social factors. The prevalence of censored

dependent data calls for a rigorous treatment with dependence taken into account, since

the existing procedures developed for iid censored data may not be applicable. However,

the work in this direction that is available so far mainly focuses on deriving properties of

the Kaplan-Meier estimator under various dependence settings. For example, consistency

and asymptotic normality of the Kaplan-Meier (KM) estimator were obtained under φ-

mixing conditions by Ying and Wei (1994); under α-mixing conditions by Cai (1998); and

under the so-called positive or negative association by Cai and Roussas (1998). Cai (2001)

obtained the uniform convergence rate of the KM estimator and proposed a consistent

estimator of the asymptotic variance of the KM estimator.

In practice, we are often mainly interested in certain functionals of the survival distri-

bution function, such as the median survival time, survival mean, mean residual life time,

etc. To the best of our knowledge, there are very few results on the asymptotic distribu-

tion of a general functional of the KM estimator when the underlying data are dependent.

Similarly, not much is known about conducting practical inference for the above-mentioned

quantities. The only paper that we are aware of is El Ghouch et al. (2011), who applied

block-wise empirical likelihood (BEL) method to construct confidence intervals for quan-

tities that can be expressed as an integral with respect to the distribution function. One

drawback of the BEL approach is that there seems no good guidance on the choice of block

size, which can affect the finite sample coverage to a great degree. Also the framework of

that paper excludes the quantile of survival distribution function (with median survival

time as a special case), which is often of practical interest.
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In this article, we aim to provide an alternative approach to confidence interval con-

struction for censored time series. Our approach is an extension of the so-called self-

normalized (SN) approach developed by Shao (2010) for a weakly dependent stationary

time series. Unlike the traditional inference approaches, which involve consistent estima-

tion of the asymptotic variance using a bandwidth-dependent procedure, or re-sampling

methods and variants (say, sub-sampling, block bootstrap or BEL), the SN approach uses

an inconsistent estimator of the asymptotic variance, which does not involve any bandwidth

or smoothing parameter. Since the limiting distribution of the self-normalized quantity

is pivotal, a confidence interval can be conveniently constructed. The extension to the

censored time series is however nontrivial. The complication mainly arises in two aspects.

First, the self-normalizer used in Shao (2010) is a functional of the estimators based on all

the recursive sub-samples, i.e. {(X1), (X1, X2), · · · , (X1, · · · , Xn)}. For censored data, we

do not observe the failure time series Xt, and for the first few subsamples, it may occur that

all or most of the data points are censored, which makes estimation impossible or unstable.

To attenuate this issue, we propose to use recursive subsamples with the first subsample

having sample size bεnc, where ε ∈ (0, 1) is called the trimming parameter. Second, the

theoretical arguments used in Shao (2010) seems not directly applicable to censored data,

as the high level conditions on the remainder terms of the influence function based ex-

pansion are difficult to verify. To circumvent the difficulty, we build on recent results of

Volgushev and Shao (2013), who provide a general approach to the asymptotic analysis of

statistics which are functionals of (recursive) subsample estimators, and provide a rigorous

asymptotic theory for the limiting distribution of the SN quantity in the censored time

series setting. It is worth noting that our framework allows quantiles of the survival distri-

bution and is thus considerably wider than that in El Ghouch et al. (2011). Additionally,

our theory is developed under rather general assumptions that allow to incorporate many

different types of weak dependence such as α-mixing or physical dependence. This is in

contrast to the approach of El Ghouch et al. (2011) who only derive results under the

assumption of β-mixing.

The rest of the paper is organized as follows. In Section 2, we describe the estimation

and SN-based inference methodology. A rigorous theoretical derivation of the limiting

distribution of the SN quantity is provided in Section 3. In Section 4, simulations are

carried out to examine the finite sample performance of the SN-based CI and compare
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with the BEL approach in El Ghouch et al (2011). Section 5 concludes.

2. Methodology

Following El Ghouch et al (2011), we shall restrict our attention to censored time series.

To fix the idea, let X1, · · · , Xn be a sequence of failure times that might not be mutually

independent, but share the same (marginal) distribution function FX . Let Y1, · · · , Yn be

the censoring time with a common (marginal) distribution function FY . The observations

are given by {(Zi, δi)}ni=1 where Zi = min(Xi, Yi) and δi = 1Xi≤Yi , namely, δi = 1 if the i’th

observation is not censored. Let FZ(t) = 1 − (1 − FX(t))(1 − FY (t)) be the distribution

function of Zi. The term failure time is a generic term inherited from survival analysis,

but it may refer to the duration time, the concentration measurement, the rainfall amount,

etc in different applications. Also notice that although only right censoring is discussed

here, the framework can be applied to left-censored data by flipping the signs of Xi and

Yi.

In survival analysis, it is of primary interest to investigate functionals of the survival

distribution function, or equivalently, the marginal distribution function of the unobserved

Xi. In the i.i.d. setting, the nonparametric maximum likelihood estimator of the survival

function 1 − FX(t) is given by the product-limit (PL) estimator [see Kaplan and Meier

(1958)] which takes the form

1− F̂X,n(t) =
∏
i:Zi≤t

(
1− δi

A(Zi)

)
,

where A(t) =
∑n

i=1 1Zi≥t is the number of censored or uncensored observations that has a

survival time no less than t. An equivalent form that is also frequently used is

1− F̂X,n(t) =
∏
Z(i)≤t

(
n− i

n− i+ 1

)δ(i)
,

where Z(1) ≤ Z(2) ≤ · · · < Z(n) are the ordered observations Zi, and δ(i)’s are the corre-

sponding censoring indicators. Similarly, let F̂Y,n denote the KM estimator of FY , then

1− F̂Y,n(t) =
∏
Z(i)≤t

(
n− i

n− i+ 1

)1−δ(i)
.
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We consider parameters that can be represented in the general form,

θ = φ(FX) (1)

where FX is the distribution function of Xi and φ is a smooth mapping from the set of

distribution functions to Rd. This form provides a general framework for a large class of

quantities that are of interest in practice. For example, letting

θ =

∫
ξ(x)FX(dx) (2)

for some given measurable function ξ, the map φξ : FX 7→
∫
ξ(x)FX(dx) is the form

considered in El Ghouch et al. (2011). The parameter is reduced to the Kaplan-Meier (KM)

estimator at time t if ξ = 1(−∞,t]; and it is the mean residual life time if ξ(x) = (x− t)1x>t
and FX(t) < 1; see Stute and Wang (1993) for some other examples. Another example of

the form given in (1) is obtained by denoting by φ the ’quantile mapping’, that is

θ(FX) = F−1
X (q), for some given q ∈ (0, 1).

Note that this map is not included in the framework of (2).

The KM estimator can be naturally regarded as the counterpart of empirical distri-

bution function Fn under censorship and an estimator of θ can then be obtained by the

plug-in method, i.e., θ̂n = φ(F̂X,n). To construct a confidence interval for θ using nor-

mal approximation, one needs a consistent estimator of the asymptotic variance. A direct

consistent estimation involves the derivation of an approximate formula for the asymp-

totic variance, followed by consistent estimation of unknown nuisance quantities using

bandwidth-dependent procedures (e.g. blockwise jackknife); see El Ghouch et al. (2011)

for a detailed discussion. The BEL approach adopted in El Ghouch et al. (2011) was

originally proposed by Kitamura (1997) as an extension of the empirical likelihood (Owen,

2001) method to the time series context. Empirical likelihood is well known to provide an

internal studentization so the empirical log-likelihood ratio evaluated at the true parameter

(up to multiplication of a constant factor) has a limiting χ2 distribution. The confidence

interval for θ is then constructed as the set of θ such that the empirical log-likelihood ratio

at θ is no greater than a given upper quantile of the χ2 distribution. The BEL approach

applies the EL to the blockwise smoothed moment conditions (or estimating equations),
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which corresponds to an implicit consistent long run variance (or asymptotic variance)

estimation of the moment conditions. The theory is elegant in that the blockwise empir-

ical log-likelihood ratio (upon multiplication of a constant factor) evaluated at the true

parameter still converges to a χ2 distribution, but a practical difficulty is the choice of

block size, which seems largely unexplored even in the uncensored time series setting.

To alleviate the problem, we adopt the self-normalized approach (Lobato 2001, Shao

2010) which avoids consistent estimation of the asymptotic variance, is free of the choice

of block size, and is also applicable to time series data. The main idea of the SN approach

is to use recursive sub-sample estimates of θ to form a self-normalized quantity, which has

a pivotal asymptotic distribution. To this end, we use θ̂k to denote the estimator of θ

based on the sub-sample {(Z1, δ1), · · · , (Zk, δk)}. This estimator is stable when the size of

the sub-sample is not too small, thus we introduce a trimming parameter to control the

minimal sub-sample size. We denote ε as the fraction of the initial subsample size to the

whole sample size.

When θ is a scalar, i.e. d = 1, the following result holds as a simple corollary to

Theorem 1 stated in Section 3.

Corollary 1. Let D2
n := n−2

∑n
j=bεnc[j(θ̂j−θ̂n)]2. Under the conditions specified in Theorem

1 in Section 3,

Tn :=
n(θ̂n − θ)2

n−2
∑n

j=bεnc[j(θ̂j − θ̂n)]2
D−→ B(1)2∫ 1

ε
(B(r)− rB(1))2dr

:= U1,ε. (3)

The proposed SN-based 100α% confidence interval is given byθ : θn ±

√√√√U1,ε(α)× n−3

n∑
j=bεnc

[j(θ̂j − θ̂n)]2

 (4)

where U1,ε(α) is the 100αth percentile of the distribution for U1,ε.

Note that the normalizing factor D2
n is an inconsistent estimator of the long run variance

of θ̂n, but is (asymptotically) proportional to the asymptotic variance, so the limiting

distribution is pivotal for a given ε. The upper critical values of the distribution of U1,ε

can be easily approximated following Lobato (2001) by approximating a Brownian motion

with the standardized partial sum process of iid N(0,1) random variables. We thus generate
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approximate critical values for the distribution of U1,ε, for ε = 0, 0.01, 0.02, · · · , 0.5 in R

based on 500, 000 independent runs. The upper critical values of the distribution of U1,ε

turn out to be approximately a quadratic function of ε for several αs of practical interest,

and the coefficients correspodning to the slope, the linear, and the quadratic terms for the

fitted quadratic polynomial is given in Table 1 as well as the R2 values (close to 1). The

formulas provide a convenient way to get the upper critical values of U1,ε for any ε ∈ [0, 0.5].

Please insert Table 1 here!

3. Asymptotic theory

In this section, we derive the asymptotic distribution of self-normalized statistics such

as Tn defined in Corollary 1 in a general setting. To this end, recall that the Kaplan-Meier

estimator F̂X,n can be represented as a function of the two quantities

F̂Z(z) = F̂Z,n(z) :=
1

n

n∑
i=1

I{Zi ≤ z}, Ĥ0(z) = Ĥ0,n(z) :=
1

n

n∑
i=1

I{Zi ≤ z}δi.

More precisely,

F̂Z(z) = 1−
∏
x≤z

(1− dΛ̂(x)), Λ̂(z) :=

∫ z

−∞

1

1− F̂Z(x−)
dĤ0(x),

and the same representation holds for FX in terms of FZ and H0(y) := P (Z ≤ y, δ = 1),

see Chapter 3.9 in van der Vaart and Wellner (1996) for details. Here,
∏

x≤z(1 − dΛ̂(x))

stands for the product-integral, see Chapter 3.9 in van der Vaart and Wellner (1996) for a

precise definition. In other words,

F̂X,n(y) = ξ(F̂Z(·), Ĥ0(·))(y) (5)

where ξ denotes the map (F̂Z(·), Ĥ0(·)) 7→ F̂X,n(·) implicitly defined above. By the results

in Section 3.9.4 of van der Vaart and Wellner (1996) the map ξ is compactly differentiable.

In what follows, denote its derivative evaluated at the point (FZ , H0) by ξ′.

For the self-normalized approach, we need to consider the estimators

F̂Z,k(y) :=
1

k

k∑
i=1

I{Zi ≤ y}, Ĥ0,k(y) :=
1

k

k∑
i=1

I{Zi ≤ y}δi.
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Additionally, let

F̂X,k(y) := ξ(F̂Z,k(·), Ĥ0,k(·))(y).

Note that the quantity F̂X,k(y) is simply the Kaplan-Meier estimator computed from

the sub-sample (Z1, δ1), ..., (Zk, δk). A natural way to estimate θ from the sub-sample

(Z1, δ1), ..., (Zk, δk) is to define θ̂k := φ(F̂X,k(·)).
One difficulty arising in the analysis of censored data lies in the fact that the distribution

function FX of the survival times is only identified [in a general non-parametric sense] up

to the upper support point of the distribution FZ , that is on the interval (−∞, τZ) where

τZ := inf{t|FZ(t) = 1}. In what follows, we assume that there exists a τ < τZ such that the

quantity of interest, say θ, is Rd-valued and depends only on the values of FX on the interval

(−∞, τ) for some τ, τZ . This definition ensures that the parameter θ is identifiable from

the observable data. Of course, the upper bound τZ is not known in practice. However, in

many applications it suffices to assume that, we have θ = φ(F̂X(·)|(−∞,τ)) for some τ < τZ .

One example is the estimation of FX(t) for t < τZ . Another example is the estimation

of F−1
X (τ) for τ < FX(τZ). Note that a similar approach was taken by El Ghouch et al

(2011).

In order to construct confidence intervals for possibly vector-valued parameters θ, we

need to consider the following quantity

T̂n(ε) := n(θ̂n − θ)T
(
n−2

n∑
j=bεnc

j2(θ̂j − θ̂n)(θ̂j − θ̂n)T
)−1

(θ̂n − θ).

In order to derive the limiting distribution of T̂n(ε), we make the following assumptions.

Assume that for some τU < τZ we have

(F) The distribution functions FY , FX are continuous on the support of FZ and their

support is contained in [0,∞).

(C) The map φ : `∞([0, τU ]) ⊃ Dφ → Rd is compactly differentiable at FX(·)|[0, τU ]

tangentially to the vector space W and its derivative is φ′.

(W) Let Z := [0, τU ] and define

Gn,1 := t
√
n
(
F̂Z,bntc(z)− FZ(z)

)
t∈[0,1],z∈Z

,

Gn,2 := t
√
n
(
Ĥ0,bntc(z)−H0(z)

))
t∈[0,1],z∈Z

.
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Assume that for a separable, centered Gaussian process G on `∞([0, 1] × [0, τU ]) ×
`∞([0, 1]× [0, τU ]) we have

Gn := (Gn,1,Gn,2)  (G(1),G(2)) = G.

Additionally, assume that the sample paths of ξ′G [recall that ξ′ was defined after

(5)] are, with probability one, contained in the set

U :=
{

(ht)t∈[0,1]

∣∣∣ht ∈ W ∀t, sup
t
‖ht‖∞ <∞

}
where W is from condition (C).

(G) Each component of the limit process G from condition (W) has a covariance function

of the form E[G(i)(s, t)G(j)(s′, t′)] = (s∧s′)Kij(t, t
′) for i, j = 1, 2 where Kij is a non-

degenerate, uniformly bounded covariance kernel.

Before we proceed, let us briefly discuss the conditions stated above.

Remark 1. Assumption (F) is not very strong since in most applications of censored data

the variables of interest X are canonically non-negative. Moreover, by a coordinate trans-

formation it can be weakened to distributions with arbitrary finite lower support point.

Remark 2. Assumption (C) is the compact differentiability assumption. It is satisfied for

many examples of practical interest. First, it applies to the map F 7→ (F (y1), ..., F (yd))

as long as y1, ..., yd < τZ . Second, it is satisfied for a collection of quantiles. More pre-

cisely, denote by τ1, ..., τd a collection of numbers in (0, 1). Under the additional assump-

tions FZ(F−1
X (τj)) < 1 for each j = 1, ..., d, if FX has a positive density at the points

F−1
X (τ1), ..., F−1

X (τd), the map F 7→ (F−1(τ1), ..., F−1(τd)) is compactly differentiable, see

Section 3.9.4 in van der Vaart and Wellner (1996) for details. Finally, it is easy to see that

the results also apply to the map F 7→
∫
g(u)dF (u) as long as g is of bounded variation

and its support is contained in [0, τ ] for some τ < τZ .

Remark 3. Assumption (W) is satisfied for many kinds of dependent data. To see this,

observe that the processes Gn,1,Gn,2 defined there can be viewed as sequential empirical

processes indexed by the classes of functions F1 := {y 7→ I{y ≤ z}|z ∈ [0, τU ]} and

F2 := {(y, δ) 7→ δI{y ≤ z}|z ∈ [0, τU ]}, respectively. Under the additional assumption that

FZ has a uniformly bounded density, the bracketing numbers of those classes of functions
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[see van der Vaart and Wellner (1996) for a definition] are of the form N[ ](ε,Fk, L2(PY,δ)) ≤
Cε−1 for some finite constant C and k = 1, 2. Thus Theorem 2.16 in Volgushev and Shao

(2013) and the findings in Andrews and Pollard (1994) show that (W) is satisfied for α-

mixing sequences with α(k) ≤ k−(2+ε) for some ε > 0 [set Q = 2 and γ = 2/(1 + ε/2) in

Andrews and Pollard (1994)]. Similarly, Theorem 2.16 in Volgushev and Shao (2013) and

the results in Hagemann (2012) imply that (W) holds for sequences satisfying a geometric

moment contraction assumption, see Wu and Shao (2004) for more details. Finally, note

that condition (G) is also satisfied in both settings discussed above.

We now are ready to state our main result.

Theorem 1. Let conditions (F), (C), (W), (G) hold. Denote by B a vector of independent

standard Brownian motions on [0, 1]. Then for any fixed ε ∈ (0, 1)

T̂n(ε)  B(1)T
(∫

[ε,1]

(
B(s)− sB(1)

)(
B(s)− sB(1)

)T
ds
)−1

B(1).

Proof of Theorem 1. The proof relies on general results in Volgushev and Shao (2013),

hereafter VS. More precisely, we will apply Proposition 3.1 in VS after setting the measure

H defined there to be given by H(A) := λ({t ∈ [ε, 1] : (0, t) ∈ A)}) with λ denoting the

one-dimensional Lebesgue measure [note that here (0, t) denotes a point in R2]. Now note

that condition (C) implies (C) in VS. Moreover, (W) and (G) yield (W’) and (A1’) in VS,

and by Proposition 2.12 in VS conditions (W), (A1) in VS follow. Similarly, (A2) in VS is

a direct consequence of (W) in the present paper. Now we see that Proposition 3.1 in VS

and the discussion thereafter imply the weak convergence of T̂n(ε) to

VT0,1
(∫

∆

(
Vs,t − (t− s)V0,1

)(
Vs,t − (t− s)V0,1

)T
dH(s, t)

)−1

V0,1

= VT0,1
(∫

[ε,1]

(
V0,t − tV0,1

)(
V0,t − tV0,1

)T
dt
)−1

V0,1

where Vs,t := φ′(ξ′(G(1)(t, ·),G(2)(t, ·))(·)) − φ′(ξ′(G(1)(s, ·),G(2)(s, ·))(·)). It thus remains

to show that the process Vs,t can be represented as

Vs,t = Σ1/2(B(t)− B(s))

with Σ1/2 denoting a non-degenerate matrix and B a vector of independent standard

Brownian motions on [0,1]. To see this, start by observing that the special structure
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of the derivative map ξ′ together with the conditions on G implies that the process

F := (φ′(ξ′(G(1)(t, ·),G(2)(t, ·))(y)))(t,y)∈[0,1]×Z is a centered Gaussian process and has a

covariance structure of the form E[F(t, y)F(s, z)] = (s ∧ t)κ(y, z) for a uniformly bounded

covariance kernel κ. Next observe that φ′ = (φ′1, ..., φ
′
d) with each φ′j being a continuous,

linear map on W ⊂ `∞([0, τU ]). By the Riesz representation theorem [see the discussion in

the proof of Lemma 3.9.8 in van der Vaart and Wellner (1996)], there exist signed Borel

measures µi, i = 1, ..., d on Z such that for i = 1, ..., d

(φ′h)i =

∫
h(s)dµi(s).

We thus see that φ′F is a vector of centered Gaussian processes that are also jointly

Gaussian and that additionally

E[(φ′F(s, ·))i(φ′F(s′, ·))j] =

∫
(s∧s′)κ(z, z′)dµi(z)dµj(z

′) = (s∧s′)
∫
κ(z, z′)dµi(z)dµj(z

′).

The claim follows with (Σ)i,j = (
∫
κ(z, z′)dµi(z)dµj(z

′))i,j, and the proof of the theorem is

thus complete. �

4. Simulations

In this section, a simulation study is carried out to compare the performance of three

types of confidence intervals (EL, BEL and SN) in terms of coverage probability, interval

length and computational time. Let blk1 be the block size used in the BEL approach to

divide the time series into overlapping blocks, and blk2 is the one used to estimate the

long run variance. Note that blk1 equals one in the EL approach. Recall that no block

size is needed for the SN approach but a trimming parameter ε is involved. Following the

simulation design presented in El Ghouch et al. (2011), we generate time series data in

the form of ARMA models At =
∑

i αiAt−i +
∑

j γjεt−j + εt with εi being Gaussian white

noise. We then transform the data to have a pre-specified marginal distribution FX and

FY by the probability integral transformation. The sample size in each series is fixed at

n = 300.

Model 1. The data are generated from Xi ∼ MA(3) with uniform censoring. The MA

coefficients are (γ1, γ2, γ3) = (4.5,−3.1, 2.7). For both this model and Model 2 below, the

survival distribution is assumed to be standard exponential and the censoring distribution
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is uniform on [0, c] where c is determined by the censoring percentage. The cut-off value

decreases as censoring percentage increases, for example, the value of c is 3.921, 1.594 and

0.761 corresponding to censoring percentage of 25, 50 and 70.

Model 2. The data are generated from Xi ∼ ARMA(3, 3) with uniform censoring.

The AR coefficients are (α1, α2, α3) = (1.7,−1.3, 0.45) and MA coefficients (γ1, γ2, γ3) =

(4.5,−3.1, 2.7). Note that the dependence is stronger under Model 2 than Model 1.

Model 3. Consider a bimodal mixture of the form f = 0.8f1+0.2f2, where f1 is the density

of exp(Z/2), with Z being N(0, 1), and f2 is the density of N(0, 0.172). Let the censoring

distribution be Exp(λ) with the parameter λ determined by the censoring percentage.

Then we simulate data from an AR(1) model with γ = 0.8 and transform the resulting

time series using the marginal probability integral transform.

4.1. Estimating distribution function at a point FX(t0)

The first example is θ = FX(t0), namely, ξ(t) = 1(t ≤ t0) in (2). Talbe 2 presents

the comparison of three methods in terms of the coverage percentage and average length

of the 95% confidence interval at t0 = F−1
X (p0) for p0 = 0.2, 0.5 and 0.7. For Model 1,

the simulation time of 1000 runs is 1.8 hours for the SN method on a Dell PC with Intel

Core 2 Duo E8400 processor. In contrast, the BEL method with the optimal block size

selected from blk1× blk2 ∈ {1, 2, 3, 5, 10, 15, 20}×{1, 2, 3, 4, 5, 10, 15, 20} takes 12.85 hours

on average. The optimal block size is chosen to minimize the empirical coverage error and

is actually an infeasible one. Here we perform the optimal block size selection following El

Ghouch et al. (2011) to make a comparison with the SN method. Note that the required

computational time for the BEL method would be more demanding if we perform the

optimal block size selection on a finer grid.

Please insert Table 2 here!

Compared with the (B)EL approach, the SN-based CI is wider in its length, but is

often closer to the nominal coverage level. Especially when (B)EL undercovers the true

parameter even with the optimal block sizes, the SN approach tends to cover the parameter

with higher probability, at the sacrifice of a longer interval; see e.g. the performance for

Model 2 in the middle of Table 2 when dependence is strong. In Model 1 when the

dependence is weak, BEL is competitive to SN in terms of the coverage probability but
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the comparison presented here is unfair to the SN approach as the optimal block size is

empirically determined and is in fact not possible for a given time series in practice. Also,

note that we chose the same cutoff-parameter ε = 0.2 in all simulations for the SN method,

the optimal block sizes for BEL were chosen differently for each model and estimation

scenario. In Model 2 when the dependence is positively stronger and Model 3 when the

distribution function is non-standard, the SN approach outperforms (B)EL in almost all

the cases in the sense that coverage probability is closer to the nominal level. As mentioned

in El Ghouch et al. (2011) and also from our own experience, the confidence interval based

on (B)EL may over-cover or undercover the parameter with different combinations of block

sizes and the coverage probability varies a lot with respect to block sizes.

4.2. Estimating the quantiles

A second example is quantile estimation when θ = F−1
X (q). The median survival time

corresponds to q = 0.5. It is often a quantity of practical interest and may be preferred

to the mean for it is robust to long tails in the estimated survival distribution, while

mean might not be estimable for a right censored variable with bounded support. In the

setting of censored i.i.d. data, some literature regarding inference of the median survival

time does exist. For example, Brookmeyer and Crowley (1982) proposed to construct

an interval by inverting a generalized sign test for right censored data. Efron (1981)

suggested a bootstrap-based CI, which was further extended by Cai and Kim (2003) to

correlated censored data. Note that Cai and Kim (2003) dealt with clustered data, where

the dependence exists within each cluster, the survival time and censoring are independent

across clusters, the number of observation within a cluster is bounded and the number of

clusters grows to infinity. Their setting is quite different from ours since for a time series,

the number of clusters can be regarded as one but the number of observations in this cluster

is increasing as more data become available. Given the differences in the two settings, we

therefore do not present a comparison between the SN method and the approach used in

Cai and Kim (2003).

Naturally we would expect the estimating procedure to break down if q is large relative

to the censoring percentage since the q-th quantile of the unobserved data is poorly esti-

mated in most of the SN subsamples. In some situations the sub-samples may not be able

to produce an estimate, even when not all the data in the initial sub-sample are censored.

13



And the resulting NA output from the initial sub-samples further affects the inconsistent

estimation for asymptotic variance, rendering the confidence interval length NA. In the

simulation when summarizing for the empirical coverage probability and CI length, we

choose to discard the NA values.

In Models 1 and 2, uniform censoring is employed with an upper bound which cuts

off the value at some particular point c, the exact values are 3.921, 1.594 and 0.761 for

censoring percentage of 25, 50 and 70, respectively, they corresponds to 0.980, 0.800, and

0.533 cut-off quantile of standard exponential distribution. Essentially it is impossible to

draw meaningful inference for any quantile higher than the cut-off points. In practice,

the SN approach both results in high NA output for the interval length, and low coverage

probability after removing the NA values. Also it is extremely difficult to estimate the

quantile near the cut-off points. For example, the associated NA count of median under

70% censoring is more than 600 out of the 1000 independent runs. Such performance is

expected since any nonparametric method will fail given insufficient data, hence the result

for that cell is not presented in Table 3. For the results shown in Table 3, the number of

associated NA counts is zero for most cells and negligible for others, and is omitted from

presentation. On the up side, for such cells, the SN method performs quite well delivering

a reasonably accurate coverage probability. Comparing Model 1 to Model 2, we find that,

when the dependence is positive and gets stronger, the interval gets longer, which agrees

with intuition.

In Model 3, the coverage probability is consistently high for different q values. The

reason is that in Model 3, exponential censoring is used instead of the uniform censoring.

Since the exponential distribution is unbounded and light tailed with a decreasing density,

the censoring affects the estimation of quantiles in a different way. When censoring per-

centage increases, it appears that the length of CI also increases while preserving proper

coverage probability. As a side note, the computation time for 1000 runs of one model with

size n = 300 is about 30 minutes for all the presented q values at a specific censoring level

for the SN method. If we increase sample size from 300 to 1000, the CI length shortens by

around
√

3/10 in most cases and coverage probability gets closer to the nominal level.

Please insert Table 3 here!
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4.3. Estimating the mean of survival time

Another example of smooth function is the mean life, or mean survival function θ =∫∞
0
tdF (t). It is also related to another basic parameter of interest called the mean residual

life or remaining life expectancy function at time t which is defined as E(X − t|X > t).

The mean residual life is the area under the survival curve to the right of t divided by

1 − FX(t), while the mean life is the total area under the survival curve by taking t = 0

in the mean residual life function. The presence of censoring prevents us from accurately

estimating the mean survival function, hence a proper truncation is necessary. To this end,

we estimate instead θ =
∫ τ

0
tdF (t) for some given τ . A standard procedure is to choose a

truncation with respect to the censoring rate. Following El Ghouch et al (2011), we choose

τ = F−1(0.79) at 25% censoring and τ = F−1(0.65) at 50% censoring. The results are

summarized in Table 4. As we can see, the SN method performs very competitively relative

to (B)EL approach in Models 1 and 2 and the coverage probability is greatly improved

by using the SN approach in Model 3, and the SN method delivers a longer interval in all

cases. Again the reported values for BEL and EL are based on the infeasible optimal block

size chosen by optimizing over a grid of block sizes.

Please insert Table 4 here!

4.4. The effect of the trimming parameter ε

In this subsection, we investigate the effect of ε on the performance of the proposed

approach. In finite samples, the SN method does not work with an extremely small ε value

in the presence of censoring since the subsample estimates cannot be obtained if all the

data points in a subsample are censored. A similar trimming issue also comes up in Zhou

and Shao (2013), who extended the SN approach to the time series regression problem

with fixed regressors. In the latter paper, a rule of thumb is to use ε = 0.1, which was

found to lead to satisfactory performance for a number of models.

Table 5 illustrates the effect of ε on the coverage probability and interval length when

the parameter is F (t0) or quantiles. When ε ranges from 0.05 to 0.5 and the censoring

percentage is 0.25, smaller εs correspond to more accurate coverage and shorter intervals in

most cases, although the difference is not substantial in some cases. To give a theoretical

explanation of this phenomenon, we note that the confidence interval constructed by SN
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is given by

θ̂n ±
√
U1,ε(α)×Dn(ε)2/n

where D2
n(ε) = n−2

∑n
j=bεnc[j(θ̂j − θ̂n)]2 is a function of ε. The expected 95% interval

length is 2
√
U1,ε(0.95)/nEDn(ε). We shall look into the ratio of the expected interval

length compared to the ε = 0 case. That is,

Ration(ε) =

√
U1,ε(0.95)EDn(ε)√
U1,0(0.95)EDn(0)

,

which converges to

Ratio(ε) :=

√
U1,ε(0.95)E(

√∫ 1

ε
(B(r)− rB(1))2dr)√

U1,0(0.95)E(
√∫ 1

0
(B(r)− rB(1))2dr)

under suitable conditions, where the latter can be approximated numerically. Figure 1

presents the plot of Ratio(ε) as a function of ε. Interestingly it can be seen that choosing ε

close to 0.1 yields a shortest confidence interval, which provides some theoretical support to

the suggestion made in Zhou and Shao (2013). On the other hand, it should be noted that

the length of the CI is not overly sensitive to the choice of ε, with the ratio bounded between

0.985 and 1.085 when ε ∈ [0, 0.5]. This provides a partial explanation why the interval gets

slightly longer when ε increases from 0.1 to 0.5 in Table 5. As to the coverage accuracy

with respect to ε, we would need to resort to Edgeworth expansion of the studentized

quantity, which seems very challenging for censored dependent case.

Please insert Figure 1 here!

Overall, the choice of ε appears to be less influential, and its impact on the inference

is captured by the limiting distribution anyway. By contrast, the block size has a sizable

impact on the BEL approach when χ2 approximation is used and its choice is not captured

by the χ2 limiting distribution.

Please insert Table 5 here!
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5. Conclusion

In this paper we extend the SN approach in Shao (2010) to the inference of censored

time series. A rigorous asymptotic theory is provided to justify the limiting distribution of

the SN quantity. Compared to the work of El Ghouch et al. (2011), our approach is much

easier to implement as recursive subsample estimates are very easy to calculate and no

sophisticated algorithm needs to be developed. Computationally speaking, the cost of the

SN approach can be considerably cheaper than the BEL approach if the optimal block size

selection is pursued. Statistically speaking, the SN-based interval appears to have more

accurate coverage in most cases with a longer length. This is not surprising given empirical

findings in Shao (2010), which also contains theoretical explanations. Furthermore, the

SN method has a wider applicability than the BEL approach for the inference of censored

data, as the latter was developed in El Ghouch et al. (2011) in a framework that excludes

the quantiles of survival distribution.

To conclude, we mention a few possible topics for future research. As this work seems

to be the first attempt to generalize the SN method to censored time series data, a closely

related topic is to consider censored spatial data. The key difficulty lies in the fact that

there is no natural ordering for spatial observations. Recently, Zhang et al. (2013) made

an extension of the SN approach to spatial setting by artificially ordering the data. It

might be possible to combine the approach in Zhang et al. (2013) and the one developed

in this paper. Furthermore, the choice of trimming parameter ε, although captured in

the first order limiting distribution, may still lead to different finite sample results for

different εs. The optimal choice presumably depends on the given loss function and seems

very difficult to derive as it hinges on the high order Edgeworth expansion of the finite

sample distribution of the SN quantity; see Zhang and Shao (2013) for recent findings on

the distribution of studentized sample mean of a Gaussian weakly dependent time series.

Finally, it seems possible to extend the SN approach to the inference of the regression

parameter in censored quantile regression models. Further research along this direction is

well underway.
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α Intercept ε ε2 R2

90% 29.230 (0.311) -17.661 (3.289) 192.141 (6.655) 99.674%

95% 46.947 (0.550) -26.935 (5.850) 324.576 (11.839) 99.653%

97.5% 68.736 (0.779) -38.774 (8.231) 499.149 (16.659) 99.715%

99% 103.290 (1.365) -52.317 (14.415) 776.136 (29.172) 99.657%

99.5% 134.871 (1.758) -73.261 (18.567) 1049.470 (37.576) 99.685%

Table 1: Regression output of upper critical values of U1,ε as a quadratic function of ε at different α levels

with associated R2 values. Values inside parentheses are the corresponding standard errors.
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Model 1 Model 2 Model 3

p0 %cens Var EL BEL SN EL BEL SN EL BEL SN

0.2 25 coverage 0.953 0.953 0.951 0.903 0.913 0.937 0.926 0.932 0.953

length 0.091 0.091 0.120 0.179 0.091 0.281 0.100 0.105 0.144

parameters 1 (1,1) ε = 0.2 15 (5,20) ε = 0.2 10 (30,10) ε = 0.2

50 coverage 0.955 0.958 0.952 0.904 0.909 0.931 0.930 0.939 0.943

length 0.093 0.093 0.123 0.184 0.185 0.285 0.116 0.122 0.171

parameters 1 (1,1) ε = 0.2 20 (5,20) ε = 0.2 10 (30,15) ε = 0.2

70 coverage 0.950 0.950 0.956 0.895 0.902 0.921 0.912 0.914 0.933

length 0.097 0.097 0.131 0.187 0.188 0.292 0.157 0.158 0.229

parameters 1 (1,1) ε = 0.2 20 (5,20) ε = 0.2 15 (5,20) ε = 0.2

0.5 25 coverage 0.947 0.950 0.959 0.902 0.911 0.943 0.937 0.943 0.951

length 0.093 0.097 0.129 0.237 0.237 0.376 0.090 0.094 0.115

parameters 3 (15,4) ε = 0.2 20 (20,15) ε = 0.2 5 (15,5) ε = 0.2

50 coverage 0.951 0.950 0.960 0.873 0.877 0.947 0.948 0.950 0.956

length 0.107 0.109 0.153 0.237 0.241 0.393 0.144 0.148 0.212

parameters 10 (5,10) ε = 0.2 20 (20,20) ε = 0.2 1 (15,10) ε = 0.2

70 coverage 0.949 0.950 0.955 0.891 0.898 0.924 0.934 0.934 0.955

length 0.190 0.193 0.266 0.308 0.303 0.496 0.245 0.245 0.363

parameters 10 (5,2) ε = 0.2 15 (15,20) ε = 0.2 15 (1,15) ε = 0.2

0.7 25 coverage 0.949 0.949 0.948 0.870 0.871 0.940 0.941 0.942 0.950

length 0.099 0.099 0.140 0.204 0.207 0.353 0.113 0.114 0.148

parameters 2 (1,2) ε = 0.2 20 (15,30) ε = 0.2 1 (5,1) ε = 0.2

50 coverage 0.951 0.951 0.952 0.846 0.850 0.943 0.921 0.921 0.951

length 0.143 0.143 0.197 0.222 0.223 0.404 0.161 0.161 0.238

parameters 2 (1,2) ε = 0.2 15 (5,20) ε = 0.2 10 (1,10) ε = 0.2

Table 2: Simulation 1 result of 95% CI for F (t0) at t0 = F−1(p0) for Model 1 (left), Model 2 (middle) and

Model 3 (right). In the table, coverage is the empirical coverage percentage; length is the mean CI length

over B = 1000 simulated confidence intervals, sample size is n = 300 in each run. The result for EL and

BEL is selected according to the average minimum coverage error and the corresponding combination of

block sizes are reported in parameters. The user chosen parameter(s) for EL refer to the block size used in

estimating long run variance; for BEL refers to (blk1,blk2) where blk1 is the block size used in determining

subgroups in BEL and blk2 is block size used in estimating long run variance. The parameter for SN refers

to the initial fraction of the data included in the sub-sample and is fixed at ε = 0.2 in the simulation.
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%cens q 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

25 coverage 0.928 0.934 0.931 0.931 0.933 0.942 0.927 0.929 �
length 0.112 0.157 0.188 0.221 0.272 0.351 0.486 0.768 �

Model 1 50 coverage 0.933 0.940 0.928 0.927 0.936 0.934 � � �
n = 300 length 0.114 0.162 0.199 0.251 0.330 0.455 � � �

70 coverage 0.920 0.940 0.916 � � � � � �
length 0.117 0.178 0.237 � � � � � �

25 coverage 0.944 0.933 0.941 0.945 0.948 0.935 0.927 0.933 0.915

length 0.060 0.085 0.104 0.122 0.145 0.187 0.256 0.397 0.716

Model 1 50 coverage 0.941 0.940 0.940 0.942 0.949 0.931 � � �
n = 1000 length 0.061 0.087 0.113 0.135 0.176 0.245 � � �

70 coverage 0.945 0.940 0.940 0.944 � � � � �
length 0.062 0.093 0.130 0.181 � � � � �

25 coverage 0.919 0.932 0.931 0.932 0.939 0.929 0.924 0.932 �
length 0.244 0.377 0.498 0.623 0.778 0.947 1.177 1.520 �

Model 2 50 coverage 0.915 0.932 0.930 0.929 0.918 � � � �
n = 300 length 0.247 0.384 0.510 0.627 0.759 � � � �

70 coverage 0.917 � � � � � � � �
length 0.249 � � � � � � � �

25 coverage 0.936 0.943 0.941 0.938 0.939 0.936 0.942 0.936 0.930

length 0.126 0.197 0.268 0.334 0.411 0.507 0.637 0.846 1.234

Model 2 50 coverage 0.942 0.939 0.937 0.944 0.936 0.934 � � �
n = 1000 length 0.127 0.199 0.274 0.343 0.430 0.539 � � �

70 coverage 0.939 0.935 0.933 � � � � � �
length 0.128 0.204 0.278 � � � � � �

25 coverage 0.919 0.94 0.933 0.922 0.926 0.914 0.912 0.917 0.925

length 0.214 0.207 0.203 0.200 0.247 0.374 0.429 0.286 0.310

Model 3 50 coverage 0.918 0.934 0.923 0.936 0.930 0.910 0.916 0.934 0.926

n = 300 length 0.232 0.251 0.282 0.337 0.451 0.650 0.677 0.482 0.547

70 coverage 0.921 0.938 0.933 0.939 0.926 � � � �
length 0.300 0.366 0.465 0.619 0.857 � � � �

25 coverage 0.933 0.937 0.945 0.938 0.941 0.944 0.94 0.942 0.931

length 0.116 0.112 0.111 0.107 0.122 0.206 0.247 0.158 0.170

Model 3 50 coverage 0.934 0.950 0.958 0.940 0.941 0.926 0.926 0.940 0.917

n = 1000 length 0.129 0.137 0.152 0.179 0.235 0.362 0.386 0.242 0.26

70 coverage 0.940 0.940 0.935 0.932 0.942 0.922 0.895 � �
length 0.161 0.188 0.232 0.301 0.429 0.644 0.672 � �

Table 3: Simulation result of 95% CI for F−1(q) for different q values based on the SN method, where q =

0.5 corresponds to the median survival time. In the table, coverage is the empirical coverage percentage;

length is the mean CI length over B = 1000 simulated confidence intervals after removing NA values. The

existence of NA values is due to censoring when no valid estimate can be obtained from the subsample,

typically when the quantile is high relative to the censoring rate. The counts of NA values associated with

each result presented are small (< 58), most of them zero. Here we choose ε = 0.2 for all Models.
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Model 1 Model 2 Model 3

% cens EL BEL SN EL BEL SN EL BEL SN

25 coverage 0.950 0.950 0.953 0.950 0.950 0.950 0.928 0.932 0.942

length 0.131 0.131 0.177 0.178 0.178 0.25 0.197 0.197 0.285

50 coverage 0.950 0.950 0.948 0.941 0.941 0.939 0.934 0.936 0.949

length 0.116 0.116 0.159 0.153 0.153 0.212 0.193 0.195 0.288

Table 4: Simulation result of 95% CI for the (truncated) survival mean for Model 1 (left), Model 2 (middle)

and Model 3 (right). In the table, coverage is the empirical coverage percentage; length is the mean CI

length over B = 1000 simulated confidence intervals, sample size is n = 300 in each run. The result for

EL and BEL is selected according to the minimum coverage error (the optimal combination of block sizes

are not reported here). The initial fraction used for SN is ε = 0.2 for all models.
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Figure 1: Ratio of expected 95% CI length at different ε levels to the one at 0.
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Model 3 with 25% censoring and sample size n = 300

F (t0) F−1(q)

ε p0= 0.2 0.5 0.7 q=0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.05 coverage 0.950 0.955 0.955 0.919 0.944 0.940 0.929 0.935 0.921 0.917 0.927 0.936

length 0.138 0.111 0.142 0.204 0.198 0.194 0.194 0.241 0.361 0.409 0.280 0.300

0.1 coverage 0.950 0.955 0.955 0.922 0.945 0.937 0.926 0.931 0.918 0.915 0.926 0.935

length 0.141 0.113 0.145 0.209 0.202 0.198 0.197 0.244 0.367 0.418 0.283 0.310

0.2 coverage 0.953 0.951 0.950 0.919 0.940 0.933 0.922 0.926 0.914 0.912 0.917 0.925

length 0.144 0.115 0.148 0.214 0.207 0.203 0.200 0.247 0.374 0.429 0.286 0.310

0.3 coverage 0.952 0.952 0.949 0.920 0.939 0.926 0.917 0.924 0.913 0.912 0.918 0.920

length 0.148 0.118 0.151 0.221 0.212 0.207 0.205 0.252 0.381 0.441 0.290 0.313

0.4 coverage 0.952 0.956 0.944 0.913 0.933 0.929 0.905 0.921 0.909 0.912 0.918 0.914

length 0.151 0.120 0.154 0.227 0.216 0.212 0.210 0.258 0.389 0.454 0.296 0.317

0.5 coverage 0.954 0.950 0.938 0.907 0.937 0.930 0.909 0.926 0.905 0.904 0.919 0.908

length 0.155 0.122 0.158 0.234 0.222 0.217 0.215 0.265 0.397 0.467 0.303 0.324

Model 3 with 25% censoring and sample size n = 1000

ε p0=0.2 0.5 0.7 q=0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.05 coverage 0.948 0.949 0.946 0.933 0.932 0.934 0.936 0.943 0.944 0.930 0.934 0.944

length 0.078 0.060 0.080 0.115 0.111 0.108 0.104 0.122 0.196 0.236 0.152 0.166

0.1 coverage 0.948 0.949 0.948 0.933 0.933 0.936 0.934 0.942 0.944 0.931 0.934 0.944

length 0.079 0.061 0.080 0.116 0.112 0.109 0.105 0.123 0.198 0.239 0.153 0.167

0.2 coverage 0.945 0.947 0.945 0.933 0.937 0.945 0.938 0.941 0.944 0.94 0.942 0.931

length 0.081 0.062 0.082 0.116 0.112 0.111 0.107 0.122 0.206 0.247 0.158 0.170

0.3 coverage 0.958 0.957 0.953 0.932 0.933 0.933 0.933 0.937 0.950 0.935 0.938 0.944

length 0.081 0.063 0.085 0.122 0.118 0.115 0.110 0.128 0.208 0.253 0.161 0.173

0.4 coverage 0.951 0.955 0.951 0.932 0.928 0.936 0.925 0.939 0.949 0.934 0.936 0.944

length 0.083 0.064 0.087 0.125 0.121 0.118 0.113 0.131 0.214 0.261 0.165 0.176

0.5 coverage 0.943 0.954 0.954 0.931 0.925 0.937 0.927 0.937 0.943 0.931 0.939 0.946

length 0.085 0.066 0.088 0.129 0.125 0.122 0.116 0.134 0.219 0.267 0.169 0.180

Table 5: Effect of initial fraction ε on simulation result of 95% CI for F (t0) at t0 = F−1(p0) and for

F−1(q) based on the SN method. The data are simulated from Model 3 with 25% censoring at sample

size n = 300, 1000, and the result is based on 1000 independent runs.
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