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Stochastic multi-scale selection of the stopping index in PET
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In this paper we present a fully data-driven selection algorithm for the stopping criterion for MLEM reconstructions in PET.
The method can be generalized to various other reconstruction algorithms, and is based on a statistical analysis of the residuals
between projected model and data.

To this end we test whether the residuals are consistent with the hypothesis of being solely due to Poisson noise. Moreover,
our method includes a multiresolution approach, i.e. we test whether the residuals are consistent with pure Poisson noise for
all possible re-binning of the data into increasing bin sizes in the detector space, at all positions. Unlike previous methods,
this method is robust in the presence of model uncertainty in the system matrix.

Technically, our method is based on the almost sure limiting behaviour of partial sums of the residuals. The test statistic
includes a rate function which appears in the corresponding almost sure limit theorem for Poisson noise, and which is different
from the Gaussian noise case. Finally, we present results from a Monte Carlo study which demonstrates the performance of
the method.
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1 Introduction

It has been shown that positron emission tomography (PET) images can be reconstructed by MLEM (maximum likelihood
expectation maximization) and OSEM (ordered subsets EM) algorithms in an effective way, if the iterations are stopped early.
Such an early termination is necessary, since it has been observed, for example, that MLEM iterates initialized with a uniform
image initially improve, but after a certain point become more noisy and lose resolution with increasing iterations [8]. Several
methods have been proposed so far for the selection of feasible stopping iterations [3-6].

Here, we present a new method for the selection of the stopping iteration for the MLEM algorithm. Our approach is based
on a stochastic multi-scale analysis of the differences between projected images and the observed detector data. The method
considers sums of the normalized residuals for each row of the sinogram on all possible scales. This is in contrast to previous
methods which only involved the single total sum of (normalized) residuals for all detectors. From a theoretical point-of-view,
our method is founded in recent results from probability theory on the almost sure behaviour of the maximum of the partial
sum process for Poisson data. Simulation results indicate that our method yields robust predictions (with respect to modeling
errors in the system matrix) for the optimal stopping iteration, which are somewhat less noisy than the iterate with maximal
signal-to-noise ratio for given data.

2 Thestochastic multi-scale selection method

We suppose that at our disposal is PET data which can be modelled as
Y; ~ Poiss([Ax];), i=1,...,n, (@)

where A is the matrix of probabilities representing the scanner, x is the m— dimensional vector of emission intensities, and
[Ax]; is the i*® entry of the vector Ax. If % is an estimator of x, we aim to decide whether or not x is a “good” estimator. To
this end we consider the normalized residuals

Ri=—"_120 i=1,...,n )

Observe that if x is a good approximation to x, we expect the residuals to have mean zero and unit variance. Moreover,
they should, in distribution, neither be “too large” (which would indicate substantial remaining signal in the residuals) nor
too small” (which would indicate overfitting).

The stochastic multi-scale selection method is based on the test statistic

1Sj4% — S}
D, = —_—,
' T 02son 1<hen—j ka(k/log(n)) ®
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Fig. 1 True image of Hoffmann’s phantom (a) and typical results from deprojection in the exact and inexact case (w.r.t. the operator matrix
A known and ill-known, respectively). The iterates shown in (b) and (c) have been selected with our multiresolution criterion, and are
Is = 17 and I = 15, respectively. All plots are for 10° total counts and use the same color scaling.

which is the maximum of all partial sums |S;1x — S;| = ‘ZZ;"H Ri‘ of residuals R;. Here, ka(-) is a scaling function

defined below, and we consider the maximum of partial sums of adjacent (normalized) residuals at all scales %, at all positions
4. In other words, the test statistic D,, tests simultaneously on all positions whether the residuals are consistent with the
distribution of the noise - or whether systematic deviations exist somewhere, on any scale.

Our method is theoretically founded on following result adapted from Steinebach [7].

Theorem 2.1 If {R;} arei.i.d. and () isthe” inverse Chernoff function” of the distribution of R, where a(-) depends
on the Poisson parameter, thenlim,, ... D, =1 as.

Observe that for the residuals to be identically distributed the function x has to be a constant vector. Hence, we suggest to
use a modification B,, of the test statistic D,, based on simulations of the test statistic [1]. The stochastic multi-scale parameter
selection rule is now given by selecting the stopping index such that the test statistic 5,, ~ 1. An extension of the method is
to attribute all iterates for which the test statistic 3,, is within certain quantiles of the simulated test statistic.

3 Reaults

We now discuss briefly the results from our simulations of the stochastic multi-scale selection method with simulated data
based on a slice of the Hoffman brain phantom consisting of 128 x 128 pixels and one million total counts. The data (sinogram)
was arranged in 192 angles with 160 detector bins for each angle. First, we performed tests in the exact case, where the same
matrix A was used both to generate the data and in the MLEM reconstruction of the images. However, in practice it is not
possible to accurately model the forward projection operator that generates the scanner data. Hence, we also performed tests
of the method on data obtained from an approximate matrix A. This approximation was obtained by assuming uniformly
distributed detector gains between 95% and 105%.

In Fig. 1 we compare the true image of Hoffmann’s phantom with typical results from deprojection with the true matrix
A and with the approximate matrix A. Overall, the main features of the image are recovered well by the iterate I, predicted
from the stochastic multi-scale criterion. It turns out that these iterates are less noisy than the iterates I s,, which are selected
such that they have maximal signal-to-noise ratio. For more details on the simulation results we refer to [1] and [2].
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