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Abstract

We present a test to determine whether variances of time series are constant over time. The

test statistic is a suitably standardized maximum of cumulative first and second moments. We

apply the test to time series of various assets and find that the test performs well in applications.

Moreover, we propose a portfolio strategy based on our test which hedges against potential financial

crises and show that it works in practice.
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1 Introduction

It is well known, in particular in empirical finance, that variances among many time series cannot be

assumed to remain constant over longer stretches of time (Krishan et al., 2009). Especially, variances

of stock indices seem to vary over time. A good example was the recent financial crisis, in which capital

market volatilities and correlations raised quite dramatically. As a consequence, risk figures increased

significantly as diversification effects were overestimated (Bissantz et al., 2010). In literature, this

phenomenon is sometimes referred to as ”Diversification Meltdown” (Campbell et al., 2008) and is

well known also from other contexts.

A change in market parameters has serious consequences in practice, in particular for portfolio

optimization which is based on diversification effects between several assets. If the relevant market

parameters (e.g. volatilities) change, the optimization is no longer valid and the risk incorrectly

calculated. Similar problems occur to applications in risk management and the valuation of financial

instruments. Surprisingly, there is a lack of methods to formally test for changes in market parameters.

Most existing procedures either require strong parametric assumptions (Dias and Embrechts, 2004),

assume that potential break points are known (Pearson and Wilks, 1933; Jennrich, 1970; Goetzmann

et al., 2005), or simply estimate correlations from moving windows without giving a formal decision

rule (Longin and Solnik, 2002). Only recently, Galeano and Peña (2007), Aue et al. (2009), Wied et al.

(2010) and Arnold et al. (2010) have proposed formal tests in this context. Galeano and Peña (2007)

and Aue et al. (2009) proposed a test to detect changes in the covariance structure, while Wied et al.

(2010) and Arnold et al. (2010) presented a method to test for changes in the correlation structure

between assets. These tests do not build upon prior knowledge as to the timing of potential shifts.

While Galeano and Peña (2007) work in a parametric environment, the other authors propose complete

nonparametric tests. They are based on cumulated sums of second order empirical cross moments (in

the vain of Ploberger et al., 1989) and reject the null of constant covariance or correlation structure if

these cumulated sums fluctuate too much.

This paper considers a non-parametric fluctuation test for constant variances over time. On the one

hand, this test can be regarded as a special case of the Aue et al. (2009)-test for the one-dimensional

case, on the other hand it goes beyond it by rigorously proving the asymptotic null distribution for

the case that the expected values are estimated by arithmetic means basing on the first j observations

(so that we compare successively estimated empirical variances). We use proving methods that were

also used for the test for constant correlation described in Wied et al. (2010) and Arnold et al. (2010).

Our second contribution is the application to financial data and the derivation of an investment

strategy. We analyze the volatility structure of four indices including stocks, bonds and commodities

and see that the test performs very well throughout the whole empirical application. The resulting

dates of rejection seem to be reasonable. Besides, we derive a simple investment strategy based on

the test and evaluate it by an out-of-sample study.

The paper is organized as follows. First, we describe the test statistic and the required theory. After
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that, we perform several tests based on real data and discuss the results. Proofs are given below the

summary in Section 5.

2 Model and Test Statistic

Let (Xt, t = 1, 2...) be a sequence of random variables with finite absolute (4 + δ)th moments. We

want to test whether the variance of Xt,

Var(Xt) = E(X2
t )− (E(Xt))

2,

is constant over time, i.e. we test

H0 : Var(Xt) = σ2 ∀t ∈ {1, . . . , T} vs. H1 : ∃t ∈ {1, . . . , T − 1} : Var(Xt) 6= Var(Xt+1)

for a constant σ2. Our test statistic is

QT (X) = max
1≤j≤T

∣∣∣∣D̂ j√
T

([VarX]j − [VarX]T )

∣∣∣∣ (1)

where

[VarX]l =
1

l

l∑
i=1

X2
i −

(
1

l

l∑
i=1

Xi

)2

=: X2
l −

(
X l

)2
is the empirical variance from the first l observations. Furthermore,

D̂ =
(
1− 2XT

)−1
(D̂1)−1/2

with

D̂1 =
1

T

T∑
i=1

Û ′iÛi + 2
T∑
j=1

k

(
j

γT

)
1

T

T−j∑
i=1

Û ′iÛi+j

and

Ûl =

(
X2
l −X2

T

Xl −XT

)
,

k(x) =

1− |x|, |x| ≤ 1

0, otherwise
,

γn =
√
T .

The scalar D̂ is needed for the asymptotic null distribution. It mainly captures the long-run-dependence

and the fluctuations resulting from estimating the expected value. The test rejects the null hypothesis
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of constant variance if the empirical variances fluctuate too much, as measured by

max1≤j≤T |[VarX]j − [VarX]T |, with the weighting factor j√
T

scaling down deviations at the beginning

of the sample where the [VarX]j are more volatile.

Of course, other functionals of the [VarX]j-series are likewise possible as suitable test statistics, such

as some standardized version of

max
1≤j≤T

([VarX]j − [VarX]T )− min
1≤j≤T

([VarX]j − [VarX]T ) ,

or simply some suitable average (see Krämer and Schotman, 1992, or Ploberger and Krämer, 1992),

but for ease of exposition we stick to expression (1) for the purpose of the present paper.

The following technical assumptions are required for the limiting null distribution:

(A1) The sequence (Xt, t = 1, 2...) is weak-sense stationary.

(A2) For

Ui =

(
X2
i − E(X2

1 )

Xi − E(X1)

)

and Sj :=
∑j

i=1 Ui, we have

lim
T→∞

E
(

1

T
STS

′
T

)
=: D1 is finite and positive definite.

(A3) The r-th absolute moments of the components of Ui are uniformly bounded for some r > 2.

(A4) The sequence (Xt, t = 1, 2...) is L2-NED (near-epoch dependent) with size − r−1
r−2 , with r from

(A3), and constants (ci), i = 1, 2, . . . on a sequence (Vi), i = 1, 2, . . ., which is α-mixing of size

φ∗ := − r
r−2 , such that

ct ≤ 2
({

E|X2
i − E(X2

1 )|2 + E|Xi − E(X1)|2
}) 1

2 .

Assumption (A4) guarantees that

U∗i :=
(
X2
i , Xi

)′
is L2-NED with size 1

2 , see Davidson (1994). It could be modified to φ-mixing, requiring only finite 4-

th moments, but this would admit less dependence than we allow here. In particular, assumption (A4)

allows for GARCH-effects (see e.g. Hansen, 1991 or Carrasco and Chen, 2002), which are observed

in financial data. Note that Assumption (A1) is already partly fulfilled because we assume constant

variances under the null. The assumption of constant expected values is in line with Aue et al. (2009).

To investigate large sample properties, we make the transformation

QT (X) = sup
z∈[0,1]

∣∣∣∣D̂ τ(z)√
T

(
[VarX]τ(z) − [VarX]T

)∣∣∣∣
with τ(z) = [1 + z(T − 1)].
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Theorem 2.1. Under H0,

QT (X)→ sup
z∈[0,1]

|B(z)|,

where B(z) is a one-dimensional Brownian Bridge.

The limit distribution of QT (X) is well known, see Billingsley (1968), and its quantiles provide an

asymptotic test.

3 Applications

3.1 Historical rejection dates

In order to evaluate the quality of the test it is applied to several assets: two stock indices (S&P 500,

DAX), a commodity index (CRB Spot Index) and a government bond index (REX), using daily data

(final quote) for the time span 01.01.1988 - 01.04.2010. The procedure for the test is as follows. We

start at the 20-th available data point and increase the period of time successively for one day. The

choice of the starting point is due to the fact that approximately 20 data points are required for a

reliable estimation of the volatility. For each of these time intervals the test is applied for α = 5%

and α = 1%, respectively. This procedure is performed until the tests rejects the null hypothesis of

constant volatility. Then, the 20-th day after rejection is the new starting point and the procedure

is repeated for the remaining time span. We have to wait this 20 days as the volatility cannot be

assumed to be constant anymore, if the null hypothesis is rejected. A new reliable estimation requires

another 20 data points after the point in time, where the volatility changed. Otherwise, the estimator

would be biased as data of two different phases were mixed.

The following tables include the rejection dates of the null hypothesis for both confidence levels:

-Insert Table 1 and 2 about here-

The results seem to be reasonable. For example, the test rejects the null hypothesis during financial

crises for all assets (α = 5%) and for both stock indices even for α = 1%. Besides, large differences

of the market parameters between the break points can be observed. Figure 1 and Table 3 illus-

trate this phenomenon for the DAX. Table 3 includes the annualized market parameters (returns and

volatilites) for the respective period between two structural breaks. Figure 1 shows the average and

the rolling 250-day volatility of the DAX. Besides, the rejection dates are given for α = 1% and α = 5%.

-Insert Figure 1 and Table 3 about here-

Our results show that the chosen confidence level plays an important role for both, rejection fre-

quency and rejection dates. Consequently, the confidence level has to be chosen carefully in practical
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applications. We suggest α = 1% for long-run applications, whereas α = 5% might be more reasonable

for an online risk management.

3.2 A Trading Strategy

The results above show that changes in market parameters can be detected reasonably. In order to in-

vestigate the possibility to derive trading strategies, which are based on the proposed test, we perform

an out of sample study. In this study, we investigate a simple strategy which applies the proposed

test.

The strategy is as follows. The available time span since the last detected change in volatility is used

to calculate the historical return which is used as an estimator for the future. Moreover, an asset is

allowed to be bought if the last structural break lies 20 days or more in the past. Finally, the capital

is uniformly distributed between all allowed assets, whose expected future return is positive.

Portfolio shiftings are done the day after the test rejected in order to design the study as realistic as

possible. Moreover, we choose α = 5% for the test and neglect transaction costs. Besides, we assume

a daily rebalancing and neglect currency fluctuations. The results can be found in Figure 2 and Table

4.

The average return of the strategy is higher than three of the underlying assets. Moreover, the portfo-

lio development is relatively stable and only a little money is lost during financial crisis. This result is

very remarkable as three risky assets are considered throughout the study. Compared to the average

return and volatility of the underlying assets, the return of the strategy is 19,37% higher, while the

volatility is 27,68% lower. This hints to singnificant improvement in performance in contrast to a

naive strategy with uniformly distributed portfolio weights.

-Insert Figure 2 and Table 4 about here-

Figure 3 shows the resulting portfolio weights of the strategy over time. Especially during crises,

a lot of fluctuation can be observed. This ensures the good performance of the strategy, because most

of the downward movement in bear markets is automatically avoided.

-Insert Figure 3 about here-

If the suggested proceeding is not applicable (e.g. because it is not allowed to dismiss an asset

completely), or the volatility is required to determine the Value at Risk or the price of a financial

instrument, other strategies have to be found. For example, intra-day data could be used to estimate

the volatility (Barndorff-Nielsen and Shephard, 2004) or subjective but conservative assumptions con-

cerning the volatilities could be made.
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4 Summary

In this paper, we introduced and proofed a new test to determine wether variances of time series are

constant over time. Thereby, the test statistic is a suitably standardized maximum of cumulative

first and second moments. We applied the test to several time series of assets which are relavant

for applications in finance and found that the test performs well in these applications. The market

parameters fluctuate a lot comparing the different periods between structural breaks.

Moreover, we derived a simple trading strategy, which outperforms a strategy based on uniformly

distributed portfolio weights significantly. More precisely, the return increased by 19,37% while the

volatility decreased by 27,68%. Nevertheless, the trading strategy is not sophisticated enough for prac-

tical applications, yet. This topic will be in focus of our ongoing research. Besides, the question arises

if volatility estimators, based on the new test, will improve the performance of portfolio optimization,

which depends of course on a reliable estimation of market parameters.

5 Proofs

For the proof of Theorem 2.1, we need a lemma and some notation: Let I be some index, e.g. I = [ε, 1]

for some ε ∈ [0, 1). For an integer k ≥ 1, let l∞(I,Rk) be the set of all bounded functions θ : I → Rk,
equipped with supremum norm

||θ||∞ := sup
i∈I
||θ(i)||,

where || · || denotes Euclidean norm.

Lemma 5.1. Under H0, in l∞([0, 1],R),

D̂
τ(·)√
T

(
[VarX]τ(·) − σ2

)
→d W (·)

where σ2 = E(X2
1 )− (E(X1))2 and W (z) is a one-dimensional Brownian Motion.

Lemma 5.1 requires

Lemma 5.2. Under H0, for arbitrary ε > 0, in l∞([ε, 1],R),

D̂
τ(·)√
T

(
[VarX]τ(·) − σ2

)
→d W1(·)

where σ2 = E(X2
1 )− (E(X1))2 and W1(z) is a one-dimensional Brownian Motion.

Lemma 5.2 is proved with a basic theorem on a modified functional delta method.

Theorem 5.3. Consider a sequence (θT )T of functions in l∞(I,Rk) converging uniformly to a function

θ ∈ l∞(I,Rk). Furthermore, let (sT )T be a sequence of functions sT : I → R\{0} such that ||s−1
T ||∞ →

0, and let MT be stochastic processes on I with values in Rk and bounded sample paths such that

||ZT ||∞ = Op(1) with ZT := sT (MT − θT ).
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Furthermore, let f : Rk → Rl be a mapping which is continuously differentiable on an open set Ω ⊂ Rk

with derivative Df . Suppose that

θ(I) is a compact subset of Ω,

where θ(I) stands for the closure of the set {θ(i) : i ∈ I} in Rk. Then it holds

1. sT (·) (f(MT (·))− f(θT (·))) = Df(θ(·))ZT (·) +RT

with a stochastic process such that

||RT ||∞ = op(1).

2. If ZT even converges in distribution (in l∞(I,Rk)) to a stochastic process Z, then

sT (·) (f(MT (·))− f(θT (·)))→d Df(θ(·))Z(·).

Proof. Assertion 2 directly follows from Assertion 1 with the usual continuous mapping theorem.

To prove the expansion from Assertion 1, note that for any i ∈ I,

RT (i) := sT (i) (f(MT (i))− f(θT (i)))−Df(θ(i))ZT (i)

= sT (i)
(
f
(
θT (i) + s−1

T (i)ZT (i)
)
− f(θT (i))

)
−Df(θ(i))ZT (i)

=

∫ 1

0
Df

(
θT (i) + us−1

T (i)ZT (i)
)
ZT (i)du−Df(θ(i))ZT (i)

=

∫ 1

0

(
Df

(
θT (i) + us−1

T (i)ZT (i)
)
−Df(θ(i))

)
du · ZT (i), (2)

provided that

rn := ||θT − θ||∞ + ||s−1
T ||∞||ZT ||∞ = op(1)

is smaller than

ρ := inf
x∈θ(I),y∈Rk\Ω

||x− y|| > 0.

The latter condition is needed such that (2) is well defined.

Hence

||RT ||∞ ≤ sup
{
||Df(y)−Df(x)|| : x ∈ θ(I), y ∈ Rk, ||y − x|| ≤ rT

}
· ||ZT ||∞. (3)

Here ||Df(y) − Df(x)|| is the usual operator norm of the matrix Df(y) − Df(x) in case of y ∈ Ω.

(In case of y /∈ Ω define ||Df(y) − Df(x)|| = ∞.) One can easily deduce from continuity of Df(·)
on Ω, compactness of θ(I) ∈ Ω and rT = op(1) that the right hand side of (3) converges to zero in

probability.
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Proof of Lemma 5.2

For

Ui =

(
X2
i − E(X2

1 )

Xi − E(X1)

)

we get with a common multivariate invariance principle, in l∞([ε, 1],R),

1√
T

τ(·)∑
i=1

Ui =
τ(·)√
T

(
X2
τ(·) − E(X2

1 )

Xτ(·) − E(X1)

)
→d D

1/2
1 W2(·).

Here, W2(z) is a two-dimensional Brownian Motion with independent components and D1 = E(U1U
′
1)+

2
∑∞

j=1 E(U1U
′
1+j).

Applying Theorem 5.3 with the function f : R2 → R, f(x, y) = x− y2, yields the convergence

τ(·)√
T

(
X2
τ(·) −

(
Xτ(·)

)2 − σ2
)
→d

(
1 −2E(X1)

)
D

1/2
1 W2(·) =: B W2(·)

resp.

τ(·)√
T

(
[VarX]τ(·) − σ2

)
→d (BB′)1/2W1(·).

The lemma then follows with the continuous mapping theorem and the fact that D1 can be consistently

estimated with a kernel estimator from Davidson and de Jong (2000). �

Proof of Lemma 5.1

With WT (z) = D̂ τ(z)√
T

(
[VarX]τ(z) − σ2

)
we define the following functions:

W ε
T (z) =

WT (z), z ≥ ε

0 z < ε
,

W ε(z) =

W1(z), z ≥ ε

0 z < ε
.

Lemma 5.2 implies that

W ε
T (·)→d W

ε(·)

in l∞([0, 1],R) and also

W ε(·)→d W1(·)

for rational ε→ 0 in l∞([ε, 1],R).

The convergence of WT (·) in l∞([0, 1],R) follows with Theorem 4.2 in Billingsley (1968) if we can show

that

lim
ε→0

lim sup
T→∞

P( sup
z∈[0,1]

|W ε
T (z)−WT (z)| ≥ η) = lim

ε→0
lim sup
T→∞

P( sup
z∈[0,ε]

|WT (z)| ≥ η) = 0
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for all η > 0.

For this, note that

WT (z) = D̂
τ(z)√
T

(
X2
τ(z) − E(X2

1 )
)
− D̂ τ(z)√

T

((
Xτ(z)

)2 − (E(X1))2
)

= D̂
τ(z)√
T

(
X2
τ(z) − E(X2

1 )
)
− D̂ τ(z)√

T

(
Xτ(z) − E(X1)

) (
Xτ(z) + E(X1)

)
.

We can deduce that supz∈[0,ε] |WT (z)| converges in distribution to a random variable that is smaller

than

C1 sup
z∈[0,ε]

|W ∗1 (z)|+ C2 sup
z∈[0,ε]

|W ∗∗1 (z)|,

where C1 and C2 are two constants and W ∗1 (z) and W ∗∗1 (z) are two Brownian motions, respectively.

This sum becomes arbitrarily small for ε→ 0 and so the lemma is proved. �

Proof of Theorem 2.1

We have

D̂
τ(z)√
T

(
[VarX]τ(z) − [VarX]T

)
= D̂

τ(z)√
T

(
[VarX]τ(z) − σ2

)
+ D̂

τ(z)√
T

(
σ2 − [VarX]T

)
= D̂

τ(z)√
T

(
[VarX]τ(z) − σ2

)
− τ(z)

T
D̂
τ(1)√
T

(
[VarX]τ(1) − σ2

)
and thus get

D̂
τ(·)√
T

(
[VarX]τ(·) − [VarX]T

)
→d A(·)

with A(z) = W1(z) − zW1(1). This is a representation of a one-dimensional Brownian Bridge. Now,

the theorem follows with the continuous mapping theorem. �
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S&P DAX REX CRB

03.02.1988 29.01.1988 12.02.1990 15.03.1988

03.02.1989 28.10.1988 06.06.1994 03.06.1988

12.02.1993 28.11.1988 03.04.1995 07.09.1988

30.09.1993 01.02.1989 01.05.1995 02.02.1990

18.07.1996 19.04.1989 17.11.1995 09.11.1992

10.03.1997 07.06.1989 19.02.1996 05.08.1994

02.02.2005 20.05.1993 28.07.1998 02.12.1996

19.10.2007 17.06.1993 12.12.2000 07.01.1998

28.10.2008 14.03.1994 14.05.2001 19.05.1998

09.10.2009 19.08.1997 01.08.2003 18.06.2001

27.11.2002 18.10.2004 19.10.2001

07.04.2003 29.02.2008 23.05.2003

17.09.2003 27.01.2010 23.06.2003

06.02.2004 21.07.2003

07.03.2005 10.05.2004

14.07.2006 02.09.2008

06.10.2006

14.03.2007

24.07.2007

06.11.2007

24.11.2008

28.08.2009

Table 1: Rejection Dates (α = 5%)

S&P DAX REX CRB

02.12.1993 29.01.1988 10.10.1994 17.11.1998

27.03.1997 12.07.1989 18.03.2009 29.05.2009

15.08.2005 04.10.1994 26.06.2009

11.12.2007 21.10.1997

01.12.2008 24.03.2003

10.09.2009 23.12.2004

06.10.2008

Table 2: Rejection Dates (α = 1%)
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DAX Returns Volatilities

29.01.1988 - 28.10.1988 44,09% 16,07%

28.10.1988 - 28.11.1988 -34,9% 12,63%

28.11.1988 - 01.02.1989 15,34% 13,29%

01.02.1989 - 19.04.1989 27,35% 12,84%

19.04.1989 - 07.06.1989 9,99% 8,96%

07.06.1989 - 20.05.1993 3,26% 20,04%

20.05.1993 - 17.06.1993 54,55% 7,87%

17.06.1993 - 14.03.1994 28,53% 16,41%

14.03.1994 - 19.08.1997 18,48% 14,59%

19.08.1997 - 27.11.2002 -4,46% 28,87%

27.11.2002 - 07.04.2003 -49,58% 43,45%

07.04.2003 - 17.09.2003 63,03% 25,92%

17.09.2003 - 06.02.2004 29,14% 19,17%

06.02.2004 - 07.03.2005 8,63% 15,08%

07.03.2005 - 14.07.2006 15,73% 14,47%

14.07.2006 - 06.10.2006 39,39% 14,67%

06.10.2006 - 14.03.2007 19,13% 11,66%

14.03.2007 - 24.07.2007 48,34% 15,69%

24.07.2007 - 06.11.2007 -5,78% 16,18%

06.11.2007 - 24.11.2008 -58,16% 33,42%

24.11.2008 - 28.08.2009 35,39% 33,66%

28.08.2009 - 01.04.2010 21,25% 18,55%

Table 3: Rejection Dates and annualized market parameters (α = 5%)

Strategy CRB REX DAX S&P Average

Return p.a. 6,78% 2,23% 5,76% 8,09% 6,62% 5,68%

Volatility p.a. 9,09% 6,51% 3,30% 22,65% 17,84% 12,57%

Table 4: Summary statistics for all indices and our strategy
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Figure 1: DAX, Volatility and Structural Breaks

Figure 2: Strategy and underlying assets

15



D. Wied, M. Arnold, N. Bissantz and D. Ziggel: A new fluctuation test for constant variances

Figure 3: Portfolio Weights
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